Suppr超能文献

心脏在云端跳动:使用云计算对电生理“大数据”进行分布式分析,以用于癫痫临床研究。

Heart beats in the cloud: distributed analysis of electrophysiological 'Big Data' using cloud computing for epilepsy clinical research.

机构信息

Division of Medical Informatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.

出版信息

J Am Med Inform Assoc. 2014 Mar-Apr;21(2):263-71. doi: 10.1136/amiajnl-2013-002156. Epub 2013 Dec 10.

Abstract

OBJECTIVE

The rapidly growing volume of multimodal electrophysiological signal data is playing a critical role in patient care and clinical research across multiple disease domains, such as epilepsy and sleep medicine. To facilitate secondary use of these data, there is an urgent need to develop novel algorithms and informatics approaches using new cloud computing technologies as well as ontologies for collaborative multicenter studies.

MATERIALS AND METHODS

We present the Cloudwave platform, which (a) defines parallelized algorithms for computing cardiac measures using the MapReduce parallel programming framework, (b) supports real-time interaction with large volumes of electrophysiological signals, and (c) features signal visualization and querying functionalities using an ontology-driven web-based interface. Cloudwave is currently used in the multicenter National Institute of Neurological Diseases and Stroke (NINDS)-funded Prevention and Risk Identification of SUDEP (sudden unexplained death in epilepsy) Mortality (PRISM) project to identify risk factors for sudden death in epilepsy.

RESULTS

Comparative evaluations of Cloudwave with traditional desktop approaches to compute cardiac measures (eg, QRS complexes, RR intervals, and instantaneous heart rate) on epilepsy patient data show one order of magnitude improvement for single-channel ECG data and 20 times improvement for four-channel ECG data. This enables Cloudwave to support real-time user interaction with signal data, which is semantically annotated with a novel epilepsy and seizure ontology.

DISCUSSION

Data privacy is a critical issue in using cloud infrastructure, and cloud platforms, such as Amazon Web Services, offer features to support Health Insurance Portability and Accountability Act standards.

CONCLUSION

The Cloudwave platform is a new approach to leverage of large-scale electrophysiological data for advancing multicenter clinical research.

摘要

目的

多模态电生理信号数据的快速增长在多个疾病领域(如癫痫和睡眠医学)的患者护理和临床研究中发挥着关键作用。为了促进这些数据的二次利用,迫切需要开发使用新的云计算技术和本体的新算法和信息学方法,以便进行多中心协作研究。

材料和方法

我们提出了 Cloudwave 平台,该平台 (a) 使用 MapReduce 并行编程框架定义了用于计算心脏测量值的并行化算法,(b) 支持与大量电生理信号的实时交互,以及 (c) 使用基于本体的网络界面提供信号可视化和查询功能。Cloudwave 目前用于由美国国立神经病学与卒中研究所 (NINDS) 资助的多中心项目,即预防和识别癫痫猝死 (SUDEP) 风险(PRISM),以识别癫痫猝死的风险因素。

结果

对 Cloudwave 与传统桌面方法计算癫痫患者数据中心脏测量值(例如 QRS 复合体、RR 间隔和瞬时心率)的比较评估表明,单通道 ECG 数据的改进幅度为一个数量级,而四通道 ECG 数据的改进幅度为 20 倍。这使得 Cloudwave 能够支持与信号数据的实时用户交互,该信号数据使用新的癫痫和癫痫发作本体进行语义注释。

讨论

在使用云基础架构时,数据隐私是一个关键问题,而亚马逊网络服务等云平台提供了支持健康保险流通与责任法案标准的功能。

结论

Cloudwave 平台是利用大规模电生理数据推进多中心临床研究的新方法。

相似文献

6
Abbreviated report of the NIH/NINDS workshop on sudden unexpected death in epilepsy.NIH/NINDS 癫痫猝死研讨会简要报告。
Neurology. 2011 May 31;76(22):1932-8. doi: 10.1212/WNL.0b013e31821de7de. Epub 2011 May 4.
9
The Medical Science DMZ.医学科学非军事区
J Am Med Inform Assoc. 2016 Nov;23(6):1199-1201. doi: 10.1093/jamia/ocw032. Epub 2016 May 2.
10
Epilepsy analytic system with cloud computing.具有云计算功能的癫痫分析系统
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:1644-7. doi: 10.1109/EMBC.2013.6609832.

引用本文的文献

1
Clinical Research Informatics: a Decade-in-Review.临床研究信息学:十年回顾
Yearb Med Inform. 2024 Aug;33(1):127-142. doi: 10.1055/s-0044-1800732. Epub 2025 Apr 8.
2
System Architecture of a European Platform for Health Policy Decision Making: MIDAS.欧洲卫生政策决策平台的系统架构:MIDAS
Front Public Health. 2022 Mar 31;10:838438. doi: 10.3389/fpubh.2022.838438. eCollection 2022.
5
HRV-Spark: Computing Heart Rate Variability Measures Using Apache Spark.HRV-Spark:使用Apache Spark计算心率变异性指标
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2020;2020. doi: 10.1109/bibm49941.2020.9313361. Epub 2020 Jan 13.
10
The history, hotspots, and trends of electrocardiogram.心电图的历史、热点及趋势
J Geriatr Cardiol. 2015 Jul;12(4):448-56. doi: 10.11909/j.issn.1671-5411.2015.04.018.

本文引用的文献

3
Web-scale pharmacovigilance: listening to signals from the crowd.网络规模药物警戒:从人群中聆听信号。
J Am Med Inform Assoc. 2013 May 1;20(3):404-8. doi: 10.1136/amiajnl-2012-001482. Epub 2013 Mar 6.
4
Normalized names for clinical drugs: RxNorm at 6 years.临床药物的规范化名称:RxNorm 六年发展
J Am Med Inform Assoc. 2011 Jul-Aug;18(4):441-8. doi: 10.1136/amiajnl-2011-000116. Epub 2011 Apr 21.
8
Searching for SNPs with cloud computing.利用云计算搜索 SNP。
Genome Biol. 2009;10(11):R134. doi: 10.1186/gb-2009-10-11-r134. Epub 2009 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验