Division of Medical Informatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):263-71. doi: 10.1136/amiajnl-2013-002156. Epub 2013 Dec 10.
The rapidly growing volume of multimodal electrophysiological signal data is playing a critical role in patient care and clinical research across multiple disease domains, such as epilepsy and sleep medicine. To facilitate secondary use of these data, there is an urgent need to develop novel algorithms and informatics approaches using new cloud computing technologies as well as ontologies for collaborative multicenter studies.
We present the Cloudwave platform, which (a) defines parallelized algorithms for computing cardiac measures using the MapReduce parallel programming framework, (b) supports real-time interaction with large volumes of electrophysiological signals, and (c) features signal visualization and querying functionalities using an ontology-driven web-based interface. Cloudwave is currently used in the multicenter National Institute of Neurological Diseases and Stroke (NINDS)-funded Prevention and Risk Identification of SUDEP (sudden unexplained death in epilepsy) Mortality (PRISM) project to identify risk factors for sudden death in epilepsy.
Comparative evaluations of Cloudwave with traditional desktop approaches to compute cardiac measures (eg, QRS complexes, RR intervals, and instantaneous heart rate) on epilepsy patient data show one order of magnitude improvement for single-channel ECG data and 20 times improvement for four-channel ECG data. This enables Cloudwave to support real-time user interaction with signal data, which is semantically annotated with a novel epilepsy and seizure ontology.
Data privacy is a critical issue in using cloud infrastructure, and cloud platforms, such as Amazon Web Services, offer features to support Health Insurance Portability and Accountability Act standards.
The Cloudwave platform is a new approach to leverage of large-scale electrophysiological data for advancing multicenter clinical research.
多模态电生理信号数据的快速增长在多个疾病领域(如癫痫和睡眠医学)的患者护理和临床研究中发挥着关键作用。为了促进这些数据的二次利用,迫切需要开发使用新的云计算技术和本体的新算法和信息学方法,以便进行多中心协作研究。
我们提出了 Cloudwave 平台,该平台 (a) 使用 MapReduce 并行编程框架定义了用于计算心脏测量值的并行化算法,(b) 支持与大量电生理信号的实时交互,以及 (c) 使用基于本体的网络界面提供信号可视化和查询功能。Cloudwave 目前用于由美国国立神经病学与卒中研究所 (NINDS) 资助的多中心项目,即预防和识别癫痫猝死 (SUDEP) 风险(PRISM),以识别癫痫猝死的风险因素。
对 Cloudwave 与传统桌面方法计算癫痫患者数据中心脏测量值(例如 QRS 复合体、RR 间隔和瞬时心率)的比较评估表明,单通道 ECG 数据的改进幅度为一个数量级,而四通道 ECG 数据的改进幅度为 20 倍。这使得 Cloudwave 能够支持与信号数据的实时用户交互,该信号数据使用新的癫痫和癫痫发作本体进行语义注释。
在使用云基础架构时,数据隐私是一个关键问题,而亚马逊网络服务等云平台提供了支持健康保险流通与责任法案标准的功能。
Cloudwave 平台是利用大规模电生理数据推进多中心临床研究的新方法。