Suppr超能文献

无答案密钥的测试理论的分层贝叶斯建模

Hierarchical Bayesian Modeling for Test Theory Without an Answer Key.

作者信息

Oravecz Zita, Anders Royce, Batchelder William H

机构信息

Department of Cognitive Sciences, UCI, 3213 Social & Behavioral Sciences Gateway Building, Irvine, CA, 92697-5100, USA,

出版信息

Psychometrika. 2015 Jun;80(2):341-64. doi: 10.1007/s11336-013-9379-4. Epub 2013 Dec 11.

Abstract

Cultural Consensus Theory (CCT) models have been applied extensively across research domains in the social and behavioral sciences in order to explore shared knowledge and beliefs. CCT models operate on response data, in which the answer key is latent. The current paper develops methods to enhance the application of these models by developing the appropriate specifications for hierarchical Bayesian inference. A primary contribution is the methodology for integrating the use of covariates into CCT models. More specifically, both person- and item-related parameters are introduced as random effects that can respectively account for patterns of inter-individual and inter-item variability.

摘要

文化共识理论(CCT)模型已在社会和行为科学的各个研究领域中广泛应用,以探索共享的知识和信念。CCT模型基于反应数据运行,其中答案键是潜在的。本文通过开发用于分层贝叶斯推断的适当规范,来改进这些模型的应用方法。一个主要贡献是将协变量的使用整合到CCT模型中的方法。更具体地说,与人和项目相关的参数都被引入为随机效应,它们可以分别解释个体间和项目间的变异模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验