Suppr超能文献

一种新的光流模式可加速分割带跑步机适应。

A novel optic flow pattern speeds split-belt locomotor adaptation.

机构信息

Motion Analysis Laboratory, Kennedy Krieger Institute, Baltimore, Maryland; and.

出版信息

J Neurophysiol. 2014 Mar;111(5):969-76. doi: 10.1152/jn.00513.2013. Epub 2013 Dec 11.

Abstract

Visual input provides vital information for helping us modify our walking pattern. For example, artificial optic flow can drive changes in step length during locomotion and may also be useful for augmenting locomotor training for individuals with gait asymmetries. Here we asked whether optic flow could modify the acquisition of a symmetric walking pattern during split-belt treadmill adaptation. Participants walked on a split-belt treadmill while watching a virtual scene that produced artificial optic flow. For the Stance Congruent group, the scene moved at the slow belt speed at foot strike on the slow belt and then moved at the fast belt speed at foot strike on the fast belt. This approximates what participants would see if they moved over ground with the same walking pattern. For the Stance Incongruent group, the scene moved fast during slow stance and vice versa. In this case, flow speed does not match what the foot is experiencing, but predicts the belt speed for the next foot strike. Results showed that the Stance Incongruent group learned more quickly than the Stance Congruent group even though each group learned the same amount during adaptation. The increase in learning rate was primarily driven by changes in spatial control of each limb, rather than temporal control. Interestingly, when this alternating optic flow pattern was presented alone, no adaptation occurred. Our results demonstrate that an unnatural pattern of optic flow, one that predicts the belt speed on the next foot strike, can be used to enhance learning rate during split-belt locomotor adaptation.

摘要

视觉输入为我们调整步行模式提供了重要信息。例如,人工光流可以在运动中改变步长,对于步态不对称的个体进行运动训练增强也可能是有用的。在这里,我们想知道光流是否可以在分带跑步机适应过程中改变对称步行模式的习得。参与者在分带跑步机上行走,同时观看产生人工光流的虚拟场景。对于站立一致组,场景在慢带脚着地时以慢带速度移动,然后在快带脚着地时以快带速度移动。这近似于参与者以相同的步行模式在地面上移动时会看到的情况。对于站立不一致组,场景在慢站立时快速移动,反之亦然。在这种情况下,流速与脚的体验不匹配,但预测了下一个脚着地的带速。结果表明,站立不一致组的学习速度比站立一致组快,尽管每组在适应过程中学习的量相同。学习率的提高主要是由每个肢体的空间控制变化驱动的,而不是由时间控制驱动的。有趣的是,当单独呈现这种交替光流模式时,不会发生适应。我们的结果表明,一种不自然的光流模式,即预测下一个脚着地的带速,可以用于增强分带运动适应过程中的学习率。

相似文献

1
A novel optic flow pattern speeds split-belt locomotor adaptation.
J Neurophysiol. 2014 Mar;111(5):969-76. doi: 10.1152/jn.00513.2013. Epub 2013 Dec 11.
2
3
Gait speed influences aftereffect size following locomotor adaptation, but only in certain environments.
Exp Brain Res. 2016 Jun;234(6):1479-90. doi: 10.1007/s00221-015-4548-6. Epub 2016 Jan 20.
4
A marching-walking hybrid induces step length adaptation and transfers to natural walking.
J Neurophysiol. 2015 Jun 1;113(10):3905-14. doi: 10.1152/jn.00779.2014. Epub 2015 Apr 1.
5
A mental workload and biomechanical assessment during split-belt locomotor adaptation with and without optic flow.
Exp Brain Res. 2023 Jul;241(7):1945-1958. doi: 10.1007/s00221-023-06609-6. Epub 2023 Jun 26.
6
Fast and Slow Adaptations of Interlimb Coordination Reflex and Learning During Split-Belt Treadmill Walking of a Quadruped Robot.
Front Robot AI. 2021 Aug 6;8:697612. doi: 10.3389/frobt.2021.697612. eCollection 2021.
9
Locomotor adaptation.
Prog Brain Res. 2011;191:65-74. doi: 10.1016/B978-0-444-53752-2.00013-8.

引用本文的文献

1
Realizing the gravity of the simulation: adaptation to simulated hypogravity leads to altered predictive control.
Front Physiol. 2024 May 24;15:1397016. doi: 10.3389/fphys.2024.1397016. eCollection 2024.
2
Electrocortical activity correlated with locomotor adaptation during split-belt treadmill walking.
J Physiol. 2023 Sep;601(17):3921-3944. doi: 10.1113/JP284505. Epub 2023 Jul 31.
3
A mental workload and biomechanical assessment during split-belt locomotor adaptation with and without optic flow.
Exp Brain Res. 2023 Jul;241(7):1945-1958. doi: 10.1007/s00221-023-06609-6. Epub 2023 Jun 26.
4
Manual stabilization reveals a transient role for balance control during locomotor adaptation.
J Neurophysiol. 2022 Oct 1;128(4):808-818. doi: 10.1152/jn.00377.2021. Epub 2022 Aug 10.
5
Real-time feedback control of split-belt ratio to induce targeted step length asymmetry.
J Neuroeng Rehabil. 2022 Jun 30;19(1):65. doi: 10.1186/s12984-022-01044-0.
6
Retinal optic flow during natural locomotion.
PLoS Comput Biol. 2022 Feb 22;18(2):e1009575. doi: 10.1371/journal.pcbi.1009575. eCollection 2022 Feb.
7
8
The Untapped Potential of Virtual Reality in Rehabilitation of Balance and Gait in Neurological Disorders.
Front Virtual Real. 2021 Mar;2. doi: 10.3389/frvir.2021.641650. Epub 2021 Mar 11.
9
On Nonlinear Regression for Trends in Split-Belt Treadmill Training.
Brain Sci. 2020 Oct 14;10(10):737. doi: 10.3390/brainsci10100737.

本文引用的文献

1
Modulating locomotor adaptation with cerebellar stimulation.
J Neurophysiol. 2012 Jun;107(11):2950-7. doi: 10.1152/jn.00645.2011. Epub 2012 Feb 29.
2
Evidence for the use of rotational optic flow cues for locomotor steering in healthy older adults.
J Neurophysiol. 2011 Sep;106(3):1089-96. doi: 10.1152/jn.00277.2011. Epub 2011 Jun 8.
3
Distinct fast and slow processes contribute to the selection of preferred step frequency during human walking.
J Appl Physiol (1985). 2011 Jun;110(6):1682-90. doi: 10.1152/japplphysiol.00536.2010. Epub 2011 Mar 10.
4
Seeing is believing: effects of visual contextual cues on learning and transfer of locomotor adaptation.
J Neurosci. 2010 Dec 15;30(50):17015-22. doi: 10.1523/JNEUROSCI.4205-10.2010.
5
The many roles of vision during walking.
Exp Brain Res. 2010 Oct;206(3):337-50. doi: 10.1007/s00221-010-2414-0. Epub 2010 Sep 18.
6
Thinking about walking: effects of conscious correction versus distraction on locomotor adaptation.
J Neurophysiol. 2010 Apr;103(4):1954-62. doi: 10.1152/jn.00832.2009. Epub 2010 Feb 10.
8
Split-belt treadmill adaptation transfers to overground walking in persons poststroke.
Neurorehabil Neural Repair. 2009 Sep;23(7):735-44. doi: 10.1177/1545968309332880. Epub 2009 Mar 23.
9
Effects of optic flow speed and lateral flow asymmetry on locomotion in younger and older adults: a virtual reality study.
J Gerontol B Psychol Sci Soc Sci. 2009 Mar;64(2):222-31. doi: 10.1093/geronb/gbp003. Epub 2009 Mar 10.
10
Reach adaptation: what determines whether we learn an internal model of the tool or adapt the model of our arm?
J Neurophysiol. 2008 Sep;100(3):1455-64. doi: 10.1152/jn.90334.2008. Epub 2008 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验