Suppr超能文献

不同的快、慢过程有助于人类行走时选择最优的步频。

Distinct fast and slow processes contribute to the selection of preferred step frequency during human walking.

机构信息

Dept. of Biomedical Physiology & Kinesiology, Simon Fraser Univ., 8888 Univ. Dr., Burnaby, BC, Canada V5A 1S6.

出版信息

J Appl Physiol (1985). 2011 Jun;110(6):1682-90. doi: 10.1152/japplphysiol.00536.2010. Epub 2011 Mar 10.

Abstract

Humans spontaneously select a step frequency that minimizes the energy expenditure of walking. This selection might be embedded within the neural circuits that generate gait so that the optimum is pre-programmed for a given walking speed. Or perhaps step frequency is directly optimized, based on sensed feedback of energy expenditure. Direct optimization is expected to be slow due to the compounded effect of delays and iteration, whereas a pre-programmed mechanism presumably allows for faster step frequency selection, albeit dependent on prior experience. To test for both pre-programmed selection and direct optimization, we applied perturbations to treadmill walking to elicit transient changes in step frequency. We found that human step frequency adjustments (n = 7) occurred with two components, the first dominating the response (66 ± 10% of total amplitude change; mean ± SD) and occurring quite quickly (1.44 ± 1.14 s to complete 95% of total change). The other component was of smaller amplitude (35 ± 10% of total change) and took tens of seconds (27.56 ± 16.18 s for 95% completion). The fast process appeared to be too fast for direct optimization and more indicative of a pre-programmed response. It also persisted even with unusual closed-loop perturbations that conflicted with prior experience and rendered the response energetically suboptimal. The slow process was more consistent with the timing expected for direct optimization. Our interpretation of these results is that humans may rely heavily on pre-programmed gaits to rapidly select their preferred step frequency and then gradually fine-tune that selection with direct optimization.

摘要

人类会自发选择一个最小化步行能量消耗的步频。这种选择可能嵌入在产生步态的神经回路中,使得在给定的步行速度下预先设定了最佳步频。或者,步频可能是基于能量消耗的感知反馈直接优化的。由于延迟和迭代的累积效应,直接优化预计会很慢,而预先编程的机制可能允许更快地选择步频,尽管这取决于先前的经验。为了测试预先编程的选择和直接优化,我们对跑步机行走施加了干扰,以引起步频的瞬态变化。我们发现,人类的步频调整(n=7)由两个组成部分组成,第一个主导响应(总振幅变化的 66±10%;平均值±标准差),并且发生得非常快(1.44±1.14 秒即可完成总变化的 95%)。另一个组成部分的幅度较小(总变化的 35±10%),需要数十秒(27.56±16.18 秒完成 95%)。快速过程似乎太快而无法直接优化,更能说明这是一种预先编程的反应。即使在与先前经验冲突且使响应在能量上次优的不寻常闭环干扰下,它也会持续存在。缓慢的过程更符合直接优化的预期时间。我们对这些结果的解释是,人类可能严重依赖预先编程的步态来快速选择他们喜欢的步频,然后再通过直接优化逐渐微调该选择。

相似文献

5
Running perturbations reveal general strategies for step frequency selection.跑步扰动揭示了选择步频的一般策略。
J Appl Physiol (1985). 2012 Apr;112(8):1239-47. doi: 10.1152/japplphysiol.01156.2011. Epub 2012 Jan 12.
7
Fast visual prediction and slow optimization of preferred walking speed.快速视觉预测和慢速优化首选步行速度。
J Neurophysiol. 2012 May;107(9):2549-59. doi: 10.1152/jn.00866.2011. Epub 2012 Feb 1.
8
Energetic cost of walking with increased step variability.步幅变异性增加时行走的能量消耗。
Gait Posture. 2012 May;36(1):102-7. doi: 10.1016/j.gaitpost.2012.01.014. Epub 2012 Mar 28.

引用本文的文献

1
On human-in-the-loop optimization of human-robot interaction.在人机交互的人机闭环优化。
Nature. 2024 Sep;633(8031):779-788. doi: 10.1038/s41586-024-07697-2. Epub 2024 Sep 25.
3
Humans plan for the near future to walk economically on uneven terrain.人类计划在不久的将来能够经济地在不平坦的地形上行走。
Proc Natl Acad Sci U S A. 2023 May 9;120(19):e2211405120. doi: 10.1073/pnas.2211405120. Epub 2023 May 1.

本文引用的文献

1
Dynamic principles of gait and their clinical implications.步态的动力学原理及其临床意义。
Phys Ther. 2010 Feb;90(2):157-74. doi: 10.2522/ptj.20090125. Epub 2009 Dec 18.
3
Elastic coupling of limb joints enables faster bipedal walking.肢体关节的弹性耦合能够实现更快的双足行走。
J R Soc Interface. 2009 Jun 6;6(35):561-73. doi: 10.1098/rsif.2008.0415. Epub 2008 Oct 28.
9
The efficiency of skilled performance.
J Mot Behav. 1983 Sep;15(3):237-61. doi: 10.1080/00222895.1983.10735299.
10
Generating the walking gait: role of sensory feedback.产生行走步态:感觉反馈的作用。
Prog Brain Res. 2004;143:123-9. doi: 10.1016/S0079-6123(03)43012-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验