Suppr超能文献

伸展适应:是什么决定了我们是学习工具的内部模型还是调整我们手臂的模型?

Reach adaptation: what determines whether we learn an internal model of the tool or adapt the model of our arm?

作者信息

Kluzik JoAnn, Diedrichsen Jörn, Shadmehr Reza, Bastian Amy J

机构信息

Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.

出版信息

J Neurophysiol. 2008 Sep;100(3):1455-64. doi: 10.1152/jn.90334.2008. Epub 2008 Jul 2.

Abstract

We make errors when learning to use a new tool. However, the cause of error may be ambiguous: is it because we misestimated properties of the tool or of our own arm? We considered a well-studied adaptation task in which people made goal-directed reaching movements while holding the handle of a robotic arm. The robot produced viscous forces that perturbed reach trajectories. As reaching improved with practice, did people recalibrate an internal model of their arm, or did they build an internal model of the novel tool (robot), or both? What factors influenced how the brain solved this credit assignment problem? To investigate these questions, we compared transfer of adaptation between three conditions: catch trials in which robot forces were turned off unannounced, robot-null trials in which subjects were told that forces were turned off, and free-space trials in which subjects still held the handle but watched as it was detached from the robot. Transfer to free space was 40% of that observed in unannounced catch trials. We next hypothesized that transfer to free space might increase if the training field changed gradually, rather than abruptly. Indeed, this method increased transfer to free space from 40 to 60%. Therefore although practice with a novel tool resulted in formation of an internal model of the tool, it also appeared to produce a transient change in the internal model of the subject's arm. Gradual changes in the tool's dynamics increased the extent to which the nervous system recalibrated the model of the subject's own arm.

摘要

我们在学习使用新工具时会犯错。然而,错误的原因可能并不明确:是因为我们错误估计了工具的特性,还是我们自己手臂的特性?我们考虑了一个经过充分研究的适应性任务,在这个任务中,人们在握住机器人手臂的手柄时进行目标导向的伸手动作。机器人产生粘性力来干扰伸手轨迹。随着练习伸手动作得到改善,人们是重新校准了他们手臂的内部模型,还是构建了新工具(机器人)的内部模型,或者两者都有?哪些因素影响大脑解决这个归因问题的方式?为了研究这些问题,我们比较了三种条件下的适应性转移:在突然关闭机器人力量的捕捉试验、告知受试者力量已关闭的机器人无效试验以及受试者仍然握住手柄但看着它与机器人分离的自由空间试验。向自由空间的转移是在未宣布的捕捉试验中观察到的转移的40%。接下来我们假设,如果训练场逐渐变化而不是突然变化,向自由空间的转移可能会增加。事实上,这种方法将向自由空间的转移从40%提高到了60%。因此,虽然使用新工具的练习导致了工具内部模型的形成,但它似乎也在受试者手臂的内部模型中产生了短暂的变化。工具动力学的逐渐变化增加了神经系统重新校准受试者自身手臂模型的程度。

相似文献

3
Transfer of dynamic learning across postures.动态学习在姿势间的传递。
J Neurophysiol. 2009 Nov;102(5):2816-24. doi: 10.1152/jn.00532.2009. Epub 2009 Aug 26.
6
The role of kinematic redundancy in adaptation of reaching.运动冗余在伸手动作适应中的作用。
Exp Brain Res. 2007 Jan;176(1):54-69. doi: 10.1007/s00221-006-0602-8. Epub 2006 Jul 28.
8
Simultaneous sensorimotor adaptation and sequence learning.同时进行的感觉运动适应和序列学习。
Exp Brain Res. 2008 Jan;184(3):451-6. doi: 10.1007/s00221-007-1213-8. Epub 2007 Nov 21.

引用本文的文献

1
Success-efficient/failure-safe strategy for hierarchical reinforcement motor learning.分层强化运动学习的成功高效/失败安全策略。
PLoS Comput Biol. 2025 May 9;21(5):e1013089. doi: 10.1371/journal.pcbi.1013089. eCollection 2025 May.

本文引用的文献

1
Adaptive control of saccades via internal feedback.通过内部反馈对扫视运动进行自适应控制。
J Neurosci. 2008 Mar 12;28(11):2804-13. doi: 10.1523/JNEUROSCI.5300-07.2008.
5
Are there distinct neural representations of object and limb dynamics?物体和肢体动力学是否存在不同的神经表征?
Exp Brain Res. 2006 Sep;173(4):689-97. doi: 10.1007/s00221-006-0411-0. Epub 2006 Mar 9.
7
Adaptation and generalization in acceleration-dependent force fields.加速度相关力场中的适应与泛化
Exp Brain Res. 2006 Mar;169(4):496-506. doi: 10.1007/s00221-005-0163-2. Epub 2005 Nov 16.
8
Neural correlates of reach errors.伸手误差的神经关联
J Neurosci. 2005 Oct 26;25(43):9919-31. doi: 10.1523/JNEUROSCI.1874-05.2005.
10
Internal models of limb dynamics and the encoding of limb state.肢体动力学的内部模型与肢体状态编码
J Neural Eng. 2005 Sep;2(3):S266-78. doi: 10.1088/1741-2560/2/3/S09. Epub 2005 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验