Suppr超能文献

使用7特斯拉多回波磁化率成像的海马亚区体内标准图谱。

In vivo normative atlas of the hippocampal subfields using multi-echo susceptibility imaging at 7 Tesla.

作者信息

Goubran Maged, Rudko David A, Santyr Brendan, Gati Joe, Szekeres Trevor, Peters Terry M, Khan Ali R

机构信息

Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada; Biomedical Engineering, Western University, London, Ontario, Canada.

出版信息

Hum Brain Mapp. 2014 Aug;35(8):3588-601. doi: 10.1002/hbm.22423. Epub 2013 Dec 13.

Abstract

OBJECTIVES

To generate a high-resolution atlas of the hippocampal subfields using images acquired from 7 T, multi-echo, gradient-echo MRI for the evaluation of epilepsy and neurodegenerative disorders as well as investigating R2* (apparent transverse relaxation rate) and quantitative volume magnetic susceptibility (QS) of the subfields.

EXPERIMENTAL DESIGN

Healthy control subjects (n=17) were scanned at 7 T using a multi-echo gradient-echo sequence and susceptibility-weighted magnitude images, R2* and QS maps were reconstructed. We defined a hippocampal subfield labeling protocol for the magnitude image produced from the average of all echoes and assessed reproducibility through volume and shape metrics. A group-wise diffeomorphic registration procedure was used to generate an average atlas of the subfields for the whole subject cohort. The quantitative MRI maps and subfield labels were then warped to the average atlas space and used to measure mean values of R2* and QS characterizing each subfield.

PRINCIPAL OBSERVATIONS

We were able to reliably label hippocampal subfields on the multi-echo susceptibility images. The group-averaged atlas accurately aligns these structures to produce a high-resolution depiction of the subfields, allowing assessment of both quantitative susceptibility and R2* across subjects. Our analysis of variance demonstrates that there are more apparent differences between the subfields on these quantitative maps than the normalized magnitude images.

CONCLUSION

We constructed a high-resolution atlas of the hippocampal subfields for use in voxel-based studies and demonstrated in vivo quantification of susceptibility and R2* in the subfields. This work is the first in vivo quantification of susceptibility values within the hippocampal subfields at 7 T.

摘要

目的

利用从7T多回波梯度回波磁共振成像(MRI)获取的图像生成海马亚区的高分辨率图谱,用于评估癫痫和神经退行性疾病,并研究亚区的R2*(表观横向弛豫率)和定量体积磁化率(QS)。

实验设计

使用多回波梯度回波序列和磁化率加权幅度图像在7T对17名健康对照受试者进行扫描,重建R2和QS图谱。我们为所有回波平均值产生的幅度图像定义了海马亚区标记方案,并通过体积和形状指标评估其可重复性。使用逐组微分同胚配准程序为整个受试者队列生成亚区的平均图谱。然后将定量MRI图谱和亚区标签扭曲到平均图谱空间,并用于测量表征每个亚区的R2和QS的平均值。

主要观察结果

我们能够在多回波磁化率图像上可靠地标记海马亚区。群体平均图谱准确地对齐这些结构,以产生亚区的高分辨率描绘,从而能够评估受试者之间的定量磁化率和R2*。我们的方差分析表明,这些定量图谱上亚区之间的差异比归一化幅度图像上的差异更明显。

结论

我们构建了一个用于基于体素研究的海马亚区高分辨率图谱,并证明了在体内对亚区的磁化率和R2*进行量化。这项工作是首次在7T下对海马亚区内的磁化率值进行体内量化。

相似文献

1
In vivo normative atlas of the hippocampal subfields using multi-echo susceptibility imaging at 7 Tesla.
Hum Brain Mapp. 2014 Aug;35(8):3588-601. doi: 10.1002/hbm.22423. Epub 2013 Dec 13.
2
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
3
A novel in vivo atlas of human hippocampal subfields using high-resolution 3 T magnetic resonance imaging.
Neuroimage. 2013 Jul 1;74:254-65. doi: 10.1016/j.neuroimage.2013.02.003. Epub 2013 Feb 13.
4
Characterizing the human hippocampus in aging and Alzheimer's disease using a computational atlas derived from ex vivo MRI and histology.
Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):4252-4257. doi: 10.1073/pnas.1801093115. Epub 2018 Mar 28.
5
Subfields of the hippocampal formation at 7 T MRI: in vivo volumetric assessment.
Neuroimage. 2012 Jul 16;61(4):1043-9. doi: 10.1016/j.neuroimage.2012.03.023. Epub 2012 Mar 14.
6
Cytoarchitectonically-driven MRI atlas of nonhuman primate hippocampus: Preservation of subfield volumes in aging.
Hippocampus. 2019 May;29(5):409-421. doi: 10.1002/hipo.22809. Epub 2017 Nov 17.
8
A high-resolution computational atlas of the human hippocampus from postmortem magnetic resonance imaging at 9.4 T.
Neuroimage. 2009 Jan 15;44(2):385-98. doi: 10.1016/j.neuroimage.2008.08.042. Epub 2008 Sep 18.

引用本文的文献

1
MRI-Based Machine Learning Prediction Framework to Lateralize Hippocampal Sclerosis in Patients With Temporal Lobe Epilepsy.
Neurology. 2021 Oct 19;97(16):e1583-e1593. doi: 10.1212/WNL.0000000000012699. Epub 2021 Sep 2.
2
Ultra-high field magnetic resonance imaging in human epilepsy: A systematic review.
Neuroimage Clin. 2021;30:102602. doi: 10.1016/j.nicl.2021.102602. Epub 2021 Feb 22.
3
High-resolution Structural Magnetic Resonance Imaging and Quantitative Susceptibility Mapping.
Magn Reson Imaging Clin N Am. 2021 Feb;29(1):13-39. doi: 10.1016/j.mric.2020.09.002.
4
Hippocampal segmentation for brains with extensive atrophy using three-dimensional convolutional neural networks.
Hum Brain Mapp. 2020 Feb 1;41(2):291-308. doi: 10.1002/hbm.24811. Epub 2019 Oct 14.
5
MR susceptibility contrast imaging using a 2D simultaneous multi-slice gradient-echo sequence at 7T.
PLoS One. 2019 Jul 17;14(7):e0219705. doi: 10.1371/journal.pone.0219705. eCollection 2019.
6
Multi-atlas tool for automated segmentation of brain gray matter nuclei and quantification of their magnetic susceptibility.
Neuroimage. 2019 May 1;191:337-349. doi: 10.1016/j.neuroimage.2019.02.016. Epub 2019 Feb 7.
7
Future Brain and Spinal Cord Volumetric Imaging in the Clinic for Monitoring Treatment Response in MS.
Curr Treat Options Neurol. 2018 Apr 20;20(6):17. doi: 10.1007/s11940-018-0504-7.
8
Systematic comparison of different techniques to measure hippocampal subfield volumes in ADNI2.
Neuroimage Clin. 2017 Dec 27;17:1006-1018. doi: 10.1016/j.nicl.2017.12.036. eCollection 2018.
9
A protocol for manual segmentation of medial temporal lobe subregions in 7 Tesla MRI.
Neuroimage Clin. 2017 May 26;15:466-482. doi: 10.1016/j.nicl.2017.05.022. eCollection 2017.

本文引用的文献

2
Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study.
Neuroimage. 2012 Sep;62(3):1593-9. doi: 10.1016/j.neuroimage.2012.05.049. Epub 2012 May 24.
3
Subfields of the hippocampal formation at 7 T MRI: in vivo volumetric assessment.
Neuroimage. 2012 Jul 16;61(4):1043-9. doi: 10.1016/j.neuroimage.2012.03.023. Epub 2012 Mar 14.
4
Direct visualization of the subthalamic nucleus and its iron distribution using high-resolution susceptibility mapping.
Hum Brain Mapp. 2012 Dec;33(12):2831-42. doi: 10.1002/hbm.21404. Epub 2011 Sep 20.
5
High field magnetic resonance microscopy of the human hippocampus in Alzheimer's disease: quantitative imaging and correlation with iron.
Neuroimage. 2012 Jan 16;59(2):1249-60. doi: 10.1016/j.neuroimage.2011.08.019. Epub 2011 Aug 16.
6
Detection of cerebral microbleeds with quantitative susceptibility mapping in the ArcAbeta mouse model of cerebral amyloidosis.
J Cereb Blood Flow Metab. 2011 Dec;31(12):2282-92. doi: 10.1038/jcbfm.2011.118. Epub 2011 Aug 17.
7
A novel background field removal method for MRI using projection onto dipole fields (PDF).
NMR Biomed. 2011 Nov;24(9):1129-36. doi: 10.1002/nbm.1670. Epub 2011 Mar 8.
8
Combining phase images from multi-channel RF coils using 3D phase offset maps derived from a dual-echo scan.
Magn Reson Med. 2011 Jun;65(6):1638-48. doi: 10.1002/mrm.22753. Epub 2011 Jan 19.
9
Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition.
Neuroimage. 2011 Apr 15;55(4):1645-56. doi: 10.1016/j.neuroimage.2010.11.088. Epub 2011 Jan 9.
10
Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism?
Neuroimage. 2011 Feb 14;54(4):2789-807. doi: 10.1016/j.neuroimage.2010.10.070. Epub 2010 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验