Suppr超能文献

基于介电泳的人胚胎干细胞与分化衍生物的区分。

Dielectrophoresis based discrimination of human embryonic stem cells from differentiating derivatives.

机构信息

Institute for Integrated Micro and Nano Systems, School of Engineering, The University of Edinburgh, Edinburgh EH9 3JF, United Kingdom.

出版信息

Biomicrofluidics. 2012 Dec 12;6(4):44113. doi: 10.1063/1.4771316. eCollection 2012.

Abstract

Assessment of the dielectrophoresis (DEP) cross-over frequency (f xo), cell diameter, and derivative membrane capacitance (C m) values for a group of undifferentiated human embryonic stem cell (hESC) lines (H1, H9, RCM1, RH1), and for a transgenic subclone of H1 (T8) revealed that hESC lines could not be discriminated on their mean f xo and C m values, the latter of which ranged from 14 to 20 mF/m(2). Differentiation of H1 and H9 to a mesenchymal stem cell-like phenotype resulted in similar significant increases in mean C m values to 41-49 mF/m(2) in both lines (p < 0.0001). BMP4-induced differentiation of RCM1 to a trophoblast cell-like phenotype also resulted in a distinct and significant increase in mean C m value to 28 mF/m(2) (p < 0.0001). The progressive transition to a higher membrane capacitance was also evident after each passage of cell culture as H9 cells transitioned to a mesenchymal stem cell-like state induced by growth on a substrate of hyaluronan. These findings confirm the existence of distinctive parameters between undifferentiated and differentiating cells on which future application of dielectrophoresis in the context of hESC manufacturing can be based.

摘要

对一组未分化的人类胚胎干细胞(hESC)系(H1、H9、RCM1、RH1)和 H1 的一个转基因亚克隆(T8)的介电泳(DEP)交叉频率(f xo)、细胞直径和衍生膜电容(C m)值进行评估后发现,hESC 系不能根据它们的平均 f xo 和 C m 值来区分,后者的范围为 14 至 20 mF/m(2)。H1 和 H9 向间充质干细胞样表型的分化导致 C m 值的平均显著增加到 41-49 mF/m(2)(p < 0.0001)。BMP4 诱导 RCM1 向滋养层样细胞表型的分化也导致 C m 值的明显和显著增加到 28 mF/m(2)(p < 0.0001)。随着细胞培养的每一次传代,膜电容的逐渐增加也很明显,因为 H9 细胞在透明质酸基质上生长诱导的间充质干细胞样状态下发生转变。这些发现证实了未分化和分化细胞之间存在独特的参数,未来可以在 hESC 制造的背景下应用介电泳。

相似文献

1
Dielectrophoresis based discrimination of human embryonic stem cells from differentiating derivatives.
Biomicrofluidics. 2012 Dec 12;6(4):44113. doi: 10.1063/1.4771316. eCollection 2012.
3
Activin A and BMP4 Signaling for Efficient Cardiac Differentiation of H7 and H9 Human Embryonic Stem Cells.
J Stem Cells Regen Med. 2012 Nov 26;8(3):198-202. doi: 10.46582/jsrm.0803013. eCollection 2012.
4
Nanotopographical control for maintaining undifferentiated human embryonic stem cell colonies in feeder free conditions.
Biomaterials. 2014 Jan;35(3):916-28. doi: 10.1016/j.biomaterials.2013.10.031. Epub 2013 Oct 29.
5
Electrical Phenotyping of Aged Human Mesenchymal Stem Cells Using Dielectrophoresis.
Micromachines (Basel). 2025 Apr 3;16(4):435. doi: 10.3390/mi16040435.
6
Human embryonic stem cell differentiation into odontoblastic lineage: an in vitro study.
Int Endod J. 2014 Apr;47(4):346-55. doi: 10.1111/iej.12150. Epub 2013 Aug 28.
7
Stage-specific cardiomyocyte differentiation method for H7 and H9 human embryonic stem cells.
Stem Cell Rev Rep. 2012 Dec;8(4):1120-8. doi: 10.1007/s12015-012-9403-6.
9
Comparison of immunological characteristics of mesenchymal stem cells derived from human embryonic stem cells and bone marrow.
Tissue Eng Part A. 2015 Feb;21(3-4):616-26. doi: 10.1089/ten.TEA.2013.0651. Epub 2015 Jan 8.
10
Comparison of extravillous trophoblast cells derived from human embryonic stem cells and from first trimester human placentas.
Placenta. 2013 Jul;34(7):536-43. doi: 10.1016/j.placenta.2013.03.016. Epub 2013 Apr 28.

引用本文的文献

3
It's Electric: When Technology Gives a Boost to Stem Cell Science.
Curr Stem Cell Rep. 2018 Jun;4(2):116-126. doi: 10.1007/s40778-018-0124-x. Epub 2018 Apr 24.
4
A Microfluidic Method for the Selection of Undifferentiated Human Embryonic Stem Cells and Analysis.
Microfluid Nanofluidics. 2015 May;18(5-6):955-966. doi: 10.1007/s10404-014-1485-9. Epub 2014 Sep 28.
5
Dielectrophoretic Characterization of Tenogenically Differentiating Mesenchymal Stem Cells.
Biosensors (Basel). 2021 Feb 16;11(2):50. doi: 10.3390/bios11020050.
6
Continuously Operating Biosensor and Its Integration into a Hermetically Sealed Medical Implant.
Micromachines (Basel). 2016 Oct 9;7(10):183. doi: 10.3390/mi7100183.
8
Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis.
Methods. 2018 Jan 15;133:91-103. doi: 10.1016/j.ymeth.2017.08.016. Epub 2017 Aug 31.
10
A scalable label-free approach to separate human pluripotent cells from differentiated derivatives.
Biomicrofluidics. 2016 Jan 14;10(1):014107. doi: 10.1063/1.4939946. eCollection 2016 Jan.

本文引用的文献

2
Microfluidic impedance spectroscopy as a tool for quantitative biology and biotechnology.
Biomicrofluidics. 2012 Jul 13;6(3):34103. doi: 10.1063/1.4737121. Print 2012 Sep.
4
Electrodeless dielectrophoresis for bioanalysis: theory, devices and applications.
Electrophoresis. 2011 Sep;32(17):2253-73. doi: 10.1002/elps.201100055.
5
Biophysical characteristics reveal neural stem cell differentiation potential.
PLoS One. 2011;6(9):e25458. doi: 10.1371/journal.pone.0025458. Epub 2011 Sep 30.
6
Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells.
Electrophoresis. 2011 Sep;32(18):2466-87. doi: 10.1002/elps.201100060. Epub 2011 Aug 26.
7
Dielectrophoresis in microfluidics technology.
Electrophoresis. 2011 Sep;32(18):2410-27. doi: 10.1002/elps.201100167. Epub 2011 Aug 26.
8
9
Review article-dielectrophoresis: status of the theory, technology, and applications.
Biomicrofluidics. 2010 Jun 29;4(2):022811. doi: 10.1063/1.3456626.
10
Clinically failed eggs as a source of normal human embryo stem cells.
Stem Cell Res. 2009 May;2(3):188-97. doi: 10.1016/j.scr.2009.01.002. Epub 2009 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验