Center for Theoretical Biological Physics and Department of Bioengineering, Rice University, Houston, TX 77005.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):544-9. doi: 10.1073/pnas.1320396110. Epub 2013 Dec 16.
A small fraction of cells in many bacterial populations, called persisters, are much less sensitive to antibiotic treatment than the majority. Persisters are in a dormant metabolic state, even while remaining genetically identical to the actively growing cells. Toxin and antitoxin modules in bacteria are believed to be one possible cause of persistence. A two-gene operon, HipBA, is one of many chromosomally encoded toxin and antitoxin modules in Escherichia coli and the HipA7 allelic variant was the first validated high-persistence mutant. Here, we present a stochastic model that can generate bistability of the HipBA system, via the reciprocal coupling of free HipA to the cellular growth rate. The actively growing state and the dormant state each correspond to a stable state of this model. Fluctuations enable transitions from one to the other. This model is fully in agreement with experimental data obtained with synthetic promoter constructs.
许多细菌群体中只有一小部分细胞,称为持留细胞,对抗生素治疗的敏感性比大多数细胞低得多。持留细胞处于休眠代谢状态,即使与积极生长的细胞在遗传上完全相同。细菌中的毒素和抗毒素模块被认为是持留现象的一个可能原因。HipBA 是两个基因操纵子,是大肠杆菌中许多染色体编码的毒素和抗毒素模块之一,HipA7 等位变体是第一个经过验证的高持留突变体。在这里,我们提出了一个随机模型,通过游离 HipA 与细胞生长速率的相互耦合,可以使 HipBA 系统产生双稳定性。该模型的活跃生长状态和休眠状态分别对应于该模型的一个稳定状态。波动使从一个状态到另一个状态的转变成为可能。该模型与使用合成启动子构建体获得的实验数据完全一致。