Suppr超能文献

正则化多方向多尺度各向异性扩散在低剂量 CT 能谱图像重建中的应用

Regularized multidirections and multiscales anisotropic diffusion for sinogram restoration of low-dosed computed tomography.

机构信息

School of Computer Science, Sichuan Normal University, Chengdu, Sichuan 610101, China.

出版信息

Comput Math Methods Med. 2013;2013:190571. doi: 10.1155/2013/190571. Epub 2013 Nov 21.

Abstract

Although most of existing anisotropic diffusion (AD) methods are supported by prefect mathematical theories, they still lead to smoothed edges and anatomy details (EADs). They are caused by not considering the discrete nature of digital signal. In order to improve the performance of AD in sinogram restoration of low-dosed computed tomography (LDCT), we propose a new AD method, named regularized multidirections and multiscales anisotropic diffusion (RMDMS-AD), by extending AD to regularized AD (RAD) in multidirections and multiscales. Since the multidirections can reduce the discrete errors to the maximum extent, meanwhile multiscales and RAD make searching neighborhood of solution be as large as possible which can get more optimal solution to AD, the new proposed method can improve the performance of AD both in denoising and in stability of solution. Moreover, the discrete errors and ill-posed solutions occur mostly near the EADs; the RMDMS-AD will also preserve EADs well. Comparing the proposed new method to existing AD methods using real sinogram, the new method shows good performance in EADs preserving while denoising and suppressing artifacts.

摘要

虽然大多数现有的各向异性扩散 (AD) 方法都有完善的数学理论支持,但它们仍然会导致边缘平滑和解剖细节(EADs)的问题。这是因为它们没有考虑到数字信号的离散性质。为了提高 AD 在低剂量计算机断层扫描 (LDCT) 正弦图重建中的性能,我们提出了一种新的 AD 方法,称为正则化多方向多尺度各向异性扩散 (RMDMS-AD),通过在多方向和多尺度上将 AD 扩展到正则化 AD (RAD)。由于多方向可以最大程度地减少离散误差,同时多尺度和 RAD 使求解邻域尽可能大,从而可以得到 AD 的更优解,因此新提出的方法可以在降噪和求解稳定性方面提高 AD 的性能。此外,离散误差和病态解大多出现在 EADs 附近;RMDMS-AD 也可以很好地保留 EADs。通过使用真实的正弦图将新方法与现有的 AD 方法进行比较,新方法在保留 EADs 的同时具有良好的降噪和抑制伪影的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c5/3856143/2a10a450f533/CMMM2013-190571.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验