Ciaranello Andrea L, Morris Bethany L, Walensky Rochelle P, Weinstein Milton C, Ayaya Samuel, Doherty Kathleen, Leroy Valeriane, Hou Taige, Desmonde Sophie, Lu Zhigang, Noubary Farzad, Patel Kunjal, Ramirez-Avila Lynn, Losina Elena, Seage George R, Freedberg Kenneth A
Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America ; Medical Practice Evaluation Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America ; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, United States of America.
Division of General Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America.
PLoS One. 2013 Dec 13;8(12):e83389. doi: 10.1371/journal.pone.0083389. eCollection 2013.
Computer simulation models can project long-term patient outcomes and inform health policy. We internally validated and then calibrated a model of HIV disease in children before initiation of antiretroviral therapy to provide a framework against which to compare the impact of pediatric HIV treatment strategies.
We developed a patient-level (Monte Carlo) model of HIV progression among untreated children <5 years of age, using the Cost-Effectiveness of Preventing AIDS Complications model framework: the CEPAC-Pediatric model. We populated the model with data on opportunistic infection and mortality risks from the International Epidemiologic Database to Evaluate AIDS (IeDEA), with mean CD4% at birth (42%) and mean CD4% decline (1.4%/month) from the Women and Infants' Transmission Study (WITS). We internally validated the model by varying WITS-derived CD4% data, comparing the corresponding model-generated survival curves to empirical survival curves from IeDEA, and identifying best-fitting parameter sets as those with a root-mean square error (RMSE) <0.01. We then calibrated the model to other African settings by systematically varying immunologic and HIV mortality-related input parameters. Model-generated survival curves for children aged 0-60 months were compared, again using RMSE, to UNAIDS data from >1,300 untreated, HIV-infected African children.
In internal validation analyses, model-generated survival curves fit IeDEA data well; modeled and observed survival at 16 months of age were 91.2% and 91.1%, respectively. RMSE varied widely with variations in CD4% parameters; the best fitting parameter set (RMSE = 0.00423) resulted when CD4% was 45% at birth and declined by 6%/month (ages 0-3 months) and 0.3%/month (ages >3 months). In calibration analyses, increases in IeDEA-derived mortality risks were necessary to fit UNAIDS survival data.
The CEPAC-Pediatric model performed well in internal validation analyses. Increases in modeled mortality risks required to match UNAIDS data highlight the importance of pre-enrollment mortality in many pediatric cohort studies.
计算机模拟模型能够预测患者的长期预后,并为卫生政策提供参考依据。我们在内部对儿童抗逆转录病毒治疗开始前的HIV疾病模型进行了验证和校准,以提供一个框架,用于比较儿科HIV治疗策略的影响。
我们使用预防艾滋病并发症的成本效益模型框架(CEPAC-儿科模型),开发了一个针对5岁以下未治疗儿童HIV进展的患者水平(蒙特卡洛)模型。我们用来自国际流行病学数据库评估艾滋病(IeDEA)的机会性感染和死亡风险数据、妇女和婴儿传播研究(WITS)中出生时的平均CD4%(42%)和平均CD4%下降率(每月1.4%)填充该模型。我们通过改变来自WITS的CD4%数据、将相应模型生成的生存曲线与IeDEA的经验生存曲线进行比较,并将均方根误差(RMSE)<0.01的参数集确定为最佳拟合参数集,从而在内部对模型进行了验证。然后,我们通过系统地改变免疫和HIV死亡率相关的输入参数,将模型校准到其他非洲地区。再次使用RMSE,将模型生成的0至60个月儿童的生存曲线与来自1300多名未治疗的HIV感染非洲儿童的联合国艾滋病规划署数据进行比较。
在内部验证分析中,模型生成的生存曲线与IeDEA数据拟合良好;16个月时的模型生存和观察生存分别为91.2%和91.1%。RMSE随CD4%参数的变化而有很大差异;当出生时CD4%为45%,在0至3个月时每月下降6%,在3个月以上时每月下降0.3%时,得到最佳拟合参数集(RMSE = 0.00423)。在校准分析中,需要增加来自IeDEA的死亡风险以拟合联合国艾滋病规划署的生存数据。
CEPAC-儿科模型在内部验证分析中表现良好。为匹配联合国艾滋病规划署数据而增加的模型死亡风险凸显了许多儿科队列研究中入组前死亡率的重要性。