Department of Cardiac Surgery, University Heart Center Leipzig, Struempellstrasse 39, 04289 Leipzig, Germany;
Image Analytics and Informatics, Siemens Corporate Research & Technology, 755 College Rd E, Princeton, NJ, USA.
Ann Cardiothorac Surg. 2013 Nov;2(6):787-95. doi: 10.3978/j.issn.2225-319X.2013.11.01.
The high complexity of the mitral valve (MV) anatomy and function is not yet fully understood. Studying especially the dynamic movement and interaction of MV components to describe MV physiology during the cardiac cycle remains a challenge. Imaging is the key to assessing details of MV disease and to studying the lesion and dysfunction of MV according to Carpentier. With the advances of computational geometrical and biomechanical MV models, improved quantification and characterization of the MV has been realized. Geometrical models can be divided into rigid and dynamic models. Both models are based on reconstruction techniques of echocardiographic or computed tomographic data sets. They allow detailed analysis of MV morphology and dynamics throughout the cardiac cycle. Biomechanical models aim to simulate the biomechanics of MV to allow for examination and analysis of the MV structure with blood flow. Two categories of biomechanical MV models can be distinguished: structural models and fluid-structure interaction (FSI) models. The complex structure and dynamics of MV apparatus throughout the cardiac cycle can be analyzed with different types of computational models. These represent substantial progress in the diagnosis of structural heart disease since MV morphology and dynamics can be studied in unprecedented detail. It is conceivable that MV modeling will contribute significantly to the understanding of the MV.
二尖瓣(MV)的解剖结构和功能十分复杂,目前尚未完全了解。研究 MV 各组成部分在心动周期中的动态运动和相互作用,以描述 MV 的生理学,仍然是一个挑战。影像学是评估 MV 疾病细节以及根据卡彭蒂埃(Carpentier)研究 MV 病变和功能障碍的关键。随着计算几何和 MV 生物力学模型的进步,已经实现了对 MV 的更精确的定量和特征描述。几何模型可分为刚性模型和动态模型。这两种模型都是基于超声心动图或计算机断层扫描数据集的重建技术。它们允许在整个心动周期内对 MV 的形态和动力学进行详细分析。生物力学模型旨在模拟 MV 的生物力学,以允许检查和分析 MV 结构与血流。生物力学 MV 模型可以分为两类:结构模型和流固耦合(FSI)模型。通过不同类型的计算模型可以分析 MV 装置在整个心动周期中的复杂结构和动力学。这代表了结构性心脏病诊断方面的重大进展,因为可以以前所未有的细节研究 MV 的形态和动力学。可以想象,MV 建模将对理解 MV 做出重大贡献。