Turku Positron Emission Tomography (PET) Centre, University of Turku and Turku University Hospital, Turku, Finland.
Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki, Helsinki, Finland.
Nat Protoc. 2014 Jan;9(1):138-45. doi: 10.1038/nprot.2013.170. Epub 2013 Dec 19.
So far seven peptide-based (18)F-radiopharmaceuticals for diagnostic applications with positron emission tomography (PET) have entered into clinical trials. Three candidates out of these seven are glycosylated peptides, which may be explained by the beneficial influence of glycosylation on in vivo pharmacokinetics of peptide tracers. This protocol describes the method for labeling peptides with 5-deoxy-5-[(18)F]fluororibose ([(18)F]FDR) as a prosthetic group. The synthesis of [(18)F]FDR is effected by a nucleophilic fluorination step by using dried Kryptofix 2.2.2-K2CO3-K(18)F complex and a subsequent HCl-catalyzed hydrolysis. The conjugation of [(18)F]FDR to the N-terminus aminooxy (-ONH2)-functionalized peptides is carried out in anilinium buffer at pH 4.6 and at room temperature (RT, 21-23 °C), with the concentration of peptide precursors being 0.3 mM. The procedure takes about 120 min and includes two cartridge isolation steps and two reversed-phase (RP) HPLC purification steps. The quaternary methyl amine (QMA) anion exchange cartridge and the hydrophilic-lipophilic balanced (HLB) cartridge are used for the isolation of (18)F-fluoride and [(18)F]FDR-conjugated peptides, respectively. The first HPLC purification provides the (18)F-fluorinated precursor of [(18)F]FDR and the second HPLC purification is to separate labeled peptides from their unlabeled precursors. The final product is formulated in PBS ready for injection, with a radiochemical purity of >98% and a radiochemical yield (RCY) of 27-37% starting from the end of bombardment (EOB). The carbohydrate nature of [(18)F]FDR and the operational convenience of this protocol should facilitate its general use.
迄今为止,已有七种基于肽的(18)F 放射性药物用于正电子发射断层扫描(PET)的诊断应用进入临床试验。在这七种候选药物中,有三种是糖基化肽,这可能是由于糖基化对肽示踪剂的体内药代动力学有有益的影响。本方案描述了用 5-脱氧-5-[[18]F]氟代核糖([(18)F]FDR)作为前体标记肽的方法。通过使用干燥的 Kryptofix 2.2.2-K2CO3-K(18)F 络合物和随后的 HCl 催化水解进行亲核氟代反应来合成[(18)F]FDR。在 pH 值为 4.6 的苯胺缓冲液中,在室温(RT,21-23°C)下,将[(18)F]FDR 与 N-末端氨氧基(-ONH2)-功能化的肽连接,肽前体的浓度为 0.3 mM。该过程大约需要 120 分钟,包括两个柱分离步骤和两个反相(RP)HPLC 纯化步骤。季铵盐(QMA)阴离子交换柱和亲水-疏水平衡(HLB)柱分别用于分离(18)F-氟化物和[(18)F]FDR 标记的肽。第一次 HPLC 纯化提供[(18)F]FDR 的(18)F-氟化前体,第二次 HPLC 纯化是将标记的肽与未标记的前体分离。最终产物以 PBS 形式配制,以备注射,放射化学纯度>98%,从轰击结束(EOB)开始的放射化学收率(RCY)为 27-37%。[(18)F]FDR 的碳水化合物性质和本方案的操作便利性应使其易于普遍使用。