Shiyko Mariya P, Burkhalter Jack, Li Runze, Park Bernard J
Department of Counseling & Applied Educational Psychology, Bouvé College of Health Sciences, Northeastern University.
Department of Psychiatry & Behavioral Sciences, Memorial Sloan-Kettering Cancer Institute.
J Consult Clin Psychol. 2014 Oct;82(5):760-72. doi: 10.1037/a0035267. Epub 2013 Dec 23.
The goal of this article is to introduce to social and behavioral scientists the generalized time-varying effect model (TVEM), a semiparametric approach for investigating time-varying effects of a treatment. The method is best suited for data collected intensively over time (e.g., experience sampling or ecological momentary assessments) and addresses questions pertaining to effects of treatment changing dynamically with time. Thus, of interest is the description of timing, magnitude, and (nonlinear) patterns of the effect.
Our presentation focuses on practical aspects of the model. A step-by-step demonstration is presented in the context of an empirical study designed to evaluate effects of surgical treatment on quality of life among early stage lung cancer patients during posthospitalization recovery (N = 59; 61% female, M age = 66.1 years). Frequency and level of distress associated with physical symptoms were assessed twice daily over a 2-week period, providing a total of 1,544 momentary assessments.
Traditional analyses (analysis of covariance [ANCOVA], repeated-measures ANCOVA, and multilevel modeling) yielded findings of no group differences. In contrast, generalized TVEM identified a pattern of the effect that varied in time and magnitude. Group differences manifested after Day 4.
Generalized TVEM is a flexible statistical approach that offers insight into the complexity of treatment effects and allows modeling of nonnormal outcomes. The practical demonstration, shared syntax, and availability of a free set of macros aim to encourage researchers to apply TVEM to complex data and stimulate important scientific discoveries.
本文旨在向社会和行为科学家介绍广义时变效应模型(TVEM),这是一种用于研究治疗时变效应的半参数方法。该方法最适用于随时间密集收集的数据(例如,经验抽样或生态瞬时评估),并解决与治疗效果随时间动态变化相关的问题。因此,我们关注的是效应的时间、大小和(非线性)模式的描述。
我们的介绍重点在于该模型的实际应用方面。在一项实证研究的背景下进行了逐步演示,该研究旨在评估手术治疗对早期肺癌患者出院后康复期间生活质量的影响(N = 59;61%为女性,平均年龄 = 66.1岁)。在两周的时间里,每天对与身体症状相关的痛苦频率和程度进行两次评估,总共进行了1544次瞬时评估。
传统分析(协方差分析[ANCOVA]、重复测量ANCOVA和多层次建模)未发现组间差异。相比之下,广义TVEM确定了效应随时间和大小变化的模式。组间差异在第4天后显现。
广义TVEM是一种灵活的统计方法,能够深入了解治疗效果的复杂性,并允许对非正态结果进行建模。实际演示、共享的语法以及免费宏集的可用性旨在鼓励研究人员将TVEM应用于复杂数据,并推动重要的科学发现。