Opt Lett. 2014 Jan 1;39(1):41-4. doi: 10.1364/OL.39.000041.
We report on a noncontact low-coherence optical phase-based imaging method, termed shear wave imaging optical coherence tomography (SWI-OCT), which enables 2D depth-resolved visualization of the low-amplitude elastic wave propagation in tissue with ultrahigh frame rate. SWI-OCT is based on 1D transverse scanning of the M-mode OCT imaging that is precisely synchronized with a low-pressure short-duration air-puff loading system. This approach of scanning and data recording allows visualization of the induced tissue deformation at high frame rate. The applied phase-resolved interferometric technique, with sensitivity on the nanometer scale, makes the low-amplitude tissue displacement detectable. For the demonstration of this method, and to study its application for tissue biomechanics, we performed pilot experiments on agar phantoms and ex vivo rabbit corneas. Samples with different elastic properties can be differentiated based on the velocity of the elastic wave propagation that is directly visualized with a 25 kHz frame rate. Our results indicate that SWI-OCT has the potential to be further developed as a major technique for depth-resolved high-resolution tissue elastography in vivo.
我们报告了一种非接触式低相干光相位成像方法,称为剪切波成像光学相干断层扫描(SWI-OCT),它能够以超高帧率对组织中低幅度弹性波传播进行 2D 深度分辨可视化。SWI-OCT 基于 M 模式 OCT 成像的一维横向扫描,与低压短持续时间空气喷射加载系统精确同步。这种扫描和数据记录的方法允许以高帧率可视化诱导的组织变形。应用的具有纳米级灵敏度的相分辨干涉技术使得能够检测到低幅度的组织位移。为了演示这种方法,并研究其在组织生物力学中的应用,我们在琼脂体模和离体兔眼角膜上进行了初步实验。基于弹性波传播速度,可以区分具有不同弹性特性的样品,弹性波传播速度可以直接以 25 kHz 的帧率可视化。我们的结果表明,SWI-OCT 有可能进一步发展成为一种用于体内深度分辨高分辨率组织弹性成像的主要技术。