Suppr超能文献

剪切波成像光相干断层扫描(SWI-OCT)在眼组织生物力学中的应用。

Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics.

出版信息

Opt Lett. 2014 Jan 1;39(1):41-4. doi: 10.1364/OL.39.000041.

Abstract

We report on a noncontact low-coherence optical phase-based imaging method, termed shear wave imaging optical coherence tomography (SWI-OCT), which enables 2D depth-resolved visualization of the low-amplitude elastic wave propagation in tissue with ultrahigh frame rate. SWI-OCT is based on 1D transverse scanning of the M-mode OCT imaging that is precisely synchronized with a low-pressure short-duration air-puff loading system. This approach of scanning and data recording allows visualization of the induced tissue deformation at high frame rate. The applied phase-resolved interferometric technique, with sensitivity on the nanometer scale, makes the low-amplitude tissue displacement detectable. For the demonstration of this method, and to study its application for tissue biomechanics, we performed pilot experiments on agar phantoms and ex vivo rabbit corneas. Samples with different elastic properties can be differentiated based on the velocity of the elastic wave propagation that is directly visualized with a 25 kHz frame rate. Our results indicate that SWI-OCT has the potential to be further developed as a major technique for depth-resolved high-resolution tissue elastography in vivo.

摘要

我们报告了一种非接触式低相干光相位成像方法,称为剪切波成像光学相干断层扫描(SWI-OCT),它能够以超高帧率对组织中低幅度弹性波传播进行 2D 深度分辨可视化。SWI-OCT 基于 M 模式 OCT 成像的一维横向扫描,与低压短持续时间空气喷射加载系统精确同步。这种扫描和数据记录的方法允许以高帧率可视化诱导的组织变形。应用的具有纳米级灵敏度的相分辨干涉技术使得能够检测到低幅度的组织位移。为了演示这种方法,并研究其在组织生物力学中的应用,我们在琼脂体模和离体兔眼角膜上进行了初步实验。基于弹性波传播速度,可以区分具有不同弹性特性的样品,弹性波传播速度可以直接以 25 kHz 的帧率可视化。我们的结果表明,SWI-OCT 有可能进一步发展成为一种用于体内深度分辨高分辨率组织弹性成像的主要技术。

相似文献

1
2
Noncontact depth-resolved micro-scale optical coherence elastography of the cornea.
Biomed Opt Express. 2014 Oct 6;5(11):3807-21. doi: 10.1364/BOE.5.003807. eCollection 2014 Nov 1.
3
Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography.
Biomed Opt Express. 2014 May 30;5(7):1980-92. doi: 10.1364/BOE.5.001980. eCollection 2014 Jul 1.
4
Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second.
Opt Lett. 2015 Jun 1;40(11):2588-91. doi: 10.1364/OL.40.002588.
5
In Vivo Human Corneal Shear-wave Optical Coherence Elastography.
Optom Vis Sci. 2021 Jan 1;98(1):58-63. doi: 10.1097/OPX.0000000000001633.
9
From supersonic shear wave imaging to full-field optical coherence shear wave elastography.
J Biomed Opt. 2013 Dec;18(12):121514. doi: 10.1117/1.JBO.18.12.121514.
10
Noncontact Elastic Wave Imaging Optical Coherence Elastography for Evaluating Changes in Corneal Elasticity Due to Crosslinking.
IEEE J Sel Top Quantum Electron. 2016 May-Jun;22(3). doi: 10.1109/JSTQE.2015.2510293. Epub 2015 Dec 17.

引用本文的文献

1
Ultra-fast line-field swept source scanning optical coherence elastography.
Biomed Opt Express. 2025 Jul 7;16(8):3105-3115. doi: 10.1364/BOE.566466. eCollection 2025 Aug 1.
2
Research progress of in vivo measurement methods of myopia sclera biomechanics.
Adv Ophthalmol Pract Res. 2025 Jun 14;5(3):205-211. doi: 10.1016/j.aopr.2025.04.006. eCollection 2025 Aug-Sep.
3
Assessment of skin fibrosis in a murine model of systemic sclerosis with multifunctional optical coherence tomography.
J Biomed Opt. 2025 Mar;30(3):036007. doi: 10.1117/1.JBO.30.3.036007. Epub 2025 Mar 27.
4
Determinants of Human Corneal Mechanical Wave Dispersion for In Vivo Optical Coherence Elastography.
Transl Vis Sci Technol. 2025 Jan 2;14(1):26. doi: 10.1167/tvst.14.1.26.
6
Full-field noise-correlation elastography for in-plane mechanical anisotropy imaging.
Biomed Opt Express. 2024 Mar 26;15(4):2622-2635. doi: 10.1364/BOE.516166. eCollection 2024 Apr 1.
8
Compressional Optical Coherence Elastography of the Cornea.
Photonics. 2021 Apr;8(4). doi: 10.3390/photonics8040111. Epub 2021 Apr 7.
9

本文引用的文献

1
A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity.
Laser Phys Lett. 2013;10(7). doi: 10.1088/1612-2011/10/7/075605. Epub 2013 May 20.
10
Biomechanical properties of in vivo human skin from dynamic optical coherence elastography.
IEEE Trans Biomed Eng. 2010 Apr;57(4):953-9. doi: 10.1109/TBME.2009.2033464. Epub 2009 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验