Krupic Julija, Bauza Marius, Burton Stephen, Lever Colin, O'Keefe John
Department of Cell and Developmental Biology, University College London, , London WC1E 6BT, UK.
Philos Trans R Soc Lond B Biol Sci. 2013 Dec 23;369(1635):20130188. doi: 10.1098/rstb.2013.0188. Print 2014 Feb 5.
The mammalian hippocampal formation provides neuronal representations of environmental location but the underlying mechanisms are unclear. The majority of cells in medial entorhinal cortex and parasubiculum show spatially periodic firing patterns. Grid cells exhibit hexagonal symmetry and form an important subset of this more general class. Occasional changes between hexagonal and non-hexagonal firing patterns imply a common underlying mechanism. Importantly, the symmetrical properties are strongly affected by the geometry of the environment. Here, we introduce a field-boundary interaction model where we demonstrate that the grid cell pattern can be formed from competing place-like and boundary inputs. We show that the modelling results can accurately capture our current experimental observations.
哺乳动物的海马结构能够提供环境位置的神经元表征,但其潜在机制尚不清楚。内嗅皮层内侧和副海马区的大多数细胞呈现出空间周期性放电模式。网格细胞表现出六边形对称,是这一更广泛类别中的一个重要子集。六边形和非六边形放电模式之间偶尔的变化意味着存在共同的潜在机制。重要的是,对称特性会受到环境几何形状的强烈影响。在此,我们引入了一个场边界相互作用模型,在该模型中我们证明了网格细胞模式可以由类似位置和边界的竞争性输入形成。我们表明,建模结果能够准确地捕捉我们当前的实验观察结果。