1Technology Division, Joint BioEnergy Institute Emeryville, CA, USA ; 2Department of Bioenergy/GTL & Structural Biology, Life Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA.
3Deconstruction Division, Joint BioEnergy Institute Emeryville, CA, USA ; 4Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA.
Front Microbiol. 2013 Dec 6;4:365. doi: 10.3389/fmicb.2013.00365. eCollection 2013.
Production of biofuels via enzymatic hydrolysis of complex plant polysaccharides is a subject of intense global interest. Microbial communities are known to express a wide range of enzymes necessary for the saccharification of lignocellulosic feedstocks and serve as a powerful reservoir for enzyme discovery. However, the growth temperature and conditions that yield high cellulase activity vary widely, and the throughput to identify optimal conditions has been limited by the slow handling and conventional analysis. A rapid method that uses small volumes of isolate culture to resolve specific enzyme activity is needed. In this work, a high throughput nanostructure-initiator mass spectrometry (NIMS)-based approach was developed for screening a thermophilic cellulolytic actinomycete, Thermobispora bispora, for β-glucosidase production under various growth conditions. Media that produced high β-glucosidase activity were found to be I/S + glucose or microcrystalline cellulose (MCC), Medium 84 + rolled oats, and M9TE + MCC at 45°C. Supernatants of cell cultures grown in M9TE + 1% MCC cleaved 2.5 times more substrate at 45°C than at all other temperatures. While T. bispora is reported to grow optimally at 60°C in Medium 84 + rolled oats and M9TE + 1% MCC, approximately 40% more conversion was observed at 45°C. This high throughput NIMS approach may provide an important tool in discovery and characterization of enzymes from environmental microbes for industrial and biofuel applications.
通过复杂植物多糖的酶解生产生物燃料是全球关注的热点。已知微生物群落表达了广泛的酶类,这些酶类是木质纤维素饲料糖化所必需的,并且是酶发现的强大资源库。然而,产纤维素酶活性的最适生长温度和条件差异很大,并且由于处理速度慢和常规分析的限制,确定最佳条件的通量受到限制。需要一种使用小体积分离培养物来确定特定酶活性的快速方法。在这项工作中,开发了一种基于高通量纳米结构引发质谱(NIMS)的方法,用于在各种生长条件下筛选嗜热纤维素分解放线菌Thermobispora bispora 产生β-葡萄糖苷酶。发现产生高β-葡萄糖苷酶活性的培养基是 I/S + 葡萄糖或微晶纤维素(MCC)、Medium 84 + 燕麦片和 M9TE + MCC 在 45°C。在 M9TE + 1% MCC 中生长的细胞培养物的上清液在 45°C 时比在所有其他温度下可水解 2.5 倍的底物。虽然 T. bispora 在 Medium 84 + 燕麦片和 M9TE + 1% MCC 中的最佳生长温度为 60°C,但在 45°C 时观察到的转化率约增加了 40%。这种高通量 NIMS 方法可能为工业和生物燃料应用中从环境微生物中发现和表征酶提供重要工具。