Indiana University School of Optometry, Bloomington, Indiana.
Invest Ophthalmol Vis Sci. 2014 Jan 20;55(1):353-9. doi: 10.1167/iovs.13-11640.
To develop perimetric stimuli for which sensitivities are more resistant to reduced retinal illumination than current clinical perimeters.
Fifty-four people free of eye disease were dilated and tested monocularly. For each test, retinal illumination was attenuated with neutral density (ND) filters, and a standard adaptation model was fit to derive mean and SEM for the adaptation parameter (NDhalf). For different stimuli, t-tests on NDhalf were used to assess significance of differences in consistency with Weber's law. Three experiments used custom Gaussian-windowed contrast sensitivity perimetry (CSP). Experiment 1 used CSP-1, with a Gaussian temporal pulse, a spatial frequency of 0.375 cyc/deg (cpd), and SD of 1.5°. Experiment 1 also used the Humphrey Matrix perimeter, with the N-30 test using 0.25 cpd and 25 Hz flicker. Experiment 2 used a rectangular temporal pulse, SDs of 0.25° and 0.5°, and spatial frequencies of 0.0 and 1.0 cpd. Experiment 3 used CSP-2, with 5-Hz flicker, SDs from 0.5° to 1.8°, and spatial frequencies from 0.14 to 0.50 cpd.
In Experiment 1, CSP-1 was more consistent with Weber's law (NDhalf ± SEM = 1.86 ± 0.08 log unit) than N-30 (NDhalf = 1.03 ± 0.03 log unit; t > 9, P < 0.0001). All stimuli used in Experiments 2 and 3 had comparable consistency with Weber's law (NDhalf = 1.49-1.69 log unit; t < 2).
Perimetric sensitivities were consistent with Weber's law when higher temporal frequencies were avoided.
开发出一种视野计刺激,其敏感度比当前临床视野计更能抵抗视网膜照度降低。
54 名无眼病的人接受了散瞳单眼测试。对于每个测试,使用中性密度(ND)滤光片衰减视网膜照度,并拟合标准适应模型,得出适应参数(NDhalf)的平均值和 SEM。对于不同的刺激,使用 NDhalf 的 t 检验评估与韦伯定律一致性的差异是否具有统计学意义。三个实验使用定制的高斯窗口对比度敏感度视野计(CSP)。实验 1 使用 CSP-1,具有高斯时脉冲、空间频率为 0.375 cyc/deg(cpd)和标准差为 1.5°。实验 1 还使用了 Humphrey 矩阵视野计,N-30 测试使用 0.25 cpd 和 25 Hz 闪烁。实验 2 使用矩形时脉冲,标准差为 0.25°和 0.5°,空间频率为 0.0 和 1.0 cpd。实验 3 使用 CSP-2,具有 5-Hz 闪烁、0.5°至 1.8°的标准差和 0.14 至 0.50 cpd 的空间频率。
在实验 1 中,CSP-1 与韦伯定律更一致(NDhalf ± SEM = 1.86 ± 0.08 log 单位),而 N-30 则不一致(NDhalf = 1.03 ± 0.03 log 单位;t > 9,P < 0.0001)。实验 2 和 3 中使用的所有刺激与韦伯定律具有相当的一致性(NDhalf = 1.49-1.69 log 单位;t < 2)。
当避免使用更高的时频时,视野计的敏感度与韦伯定律一致。