Mol Imaging. 2013 Oct;12(7):1-13.
Bioluminescence imaging is widely used for cell-based assays and animal imaging studies in biomedical research and drug development, capitalizing on the high signal to background of this technique. A relatively small number of luciferases are available for imaging studies, substantially limiting the ability to image multiple molecular and cellular events, as done commonly with fluorescence imaging. To advance dual reporter bioluminescence molecular imaging, we tested a recently developed, adenosine triphosphate–independent luciferase enzyme from Oplophorus gracilirostris (NanoLuc [NL]) as a reporter for animal imaging. We demonstrated that NL could be imaged in superficial and deep tissues in living mice, although the detection of NL in deep tissues was limited by emission of predominantly blue light by this enzyme. Changes in bioluminescence from NL over time could be used to quantify tumor growth, and secreted NL was detectable in small volumes of serum. We combined NL and firefly luciferase reporters to quantify two key steps in transforming growth factor β signaling in intact cells and living mice, establishing a novel dual luciferase imaging strategy for quantifying signal transduction and drug targeting. Our results establish NL as a new reporter for bioluminescence imaging studies in intact cells and living mice that will expand imaging of signal transduction in normal physiology, disease, and drug development.
生物发光成像是一种广泛应用于生物医学研究和药物开发的细胞分析和动物成像技术,其利用了该技术高信号与背景信号比值的特点。在成像研究中,可用的荧光素酶数量相对较少,极大地限制了对多个分子和细胞事件的成像能力,而这在荧光成像中是很常见的。为了推进双报告基因生物发光分子成像,我们测试了一种最近开发的来自大蚊科 Gracilirostris 属(Oplophorus gracilirostris)的不依赖于三磷酸腺苷的荧光素酶(NanoLuc [NL]),作为动物成像的报告基因。我们证明,NL 可以在活体小鼠的浅层和深层组织中成像,尽管这种酶主要发射蓝光,限制了对深层组织中 NL 的检测。NL 随时间产生的生物发光变化可用于定量肿瘤生长,并且在少量血清中可检测到分泌的 NL。我们将 NL 和萤火虫荧光素酶报告基因结合起来,定量分析转化生长因子 β 信号在完整细胞和活体小鼠中的两个关键步骤,建立了一种新的双荧光素酶成像策略,用于定量信号转导和药物靶向。我们的结果确立了 NL 作为完整细胞和活体小鼠生物发光成像研究的新报告基因,将扩展对正常生理学、疾病和药物开发中信号转导的成像研究。