Suppr超能文献

生物发光成像复杂因素的识别

Identification of Factors Complicating Bioluminescence Imaging.

作者信息

Yeh Hsien-Wei, Wu Tianchen, Chen Minghai, Ai Hui-Wang

机构信息

Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, Department of Chemistry, and UVA Cancer Center , University of Virginia , 1340 Jefferson Park Avenue , Charlottesville , Virginia 22908 , United States.

出版信息

Biochemistry. 2019 Mar 26;58(12):1689-1697. doi: 10.1021/acs.biochem.8b01303. Epub 2019 Mar 11.

Abstract

In vivo bioluminescence imaging (BLI) has become a standard, non-invasive imaging modality for following gene expression or the fate of proteins and cells in living animals. Currently, bioluminescent reporters used in laboratories are mostly derivatives of two major luciferase families: ATP-dependent insect luciferases and ATP-independent marine luciferases. Inconsistent results of experiments using different bioluminescent reporters, such as Akaluc and Antareas2, have been reported. Herein, we re-examined the inconsistency in several experimental settings and identified the factors, such as ATP dependency, stability in serum, and molecular sizes of luciferases, that contributed to the observed differences. We expect this study will make the research community aware of these factors and facilitate more accurate interpretation of BLI data by considering the nature of each bioluminescent reporter.

摘要

体内生物发光成像(BLI)已成为一种标准的非侵入性成像方式,用于追踪活体动物中的基因表达或蛋白质及细胞的命运。目前,实验室中使用的生物发光报告基因大多是两个主要荧光素酶家族的衍生物:依赖ATP的昆虫荧光素酶和不依赖ATP的海洋荧光素酶。已有报道称,使用不同生物发光报告基因(如Akaluc和Antareas2)进行实验时结果不一致。在此,我们在几种实验设置中重新检查了这种不一致性,并确定了导致观察到差异的因素,如ATP依赖性、血清稳定性和荧光素酶的分子大小。我们期望这项研究能让研究界意识到这些因素,并通过考虑每个生物发光报告基因的特性,促进对BLI数据更准确的解读。

相似文献

1
Identification of Factors Complicating Bioluminescence Imaging.
Biochemistry. 2019 Mar 26;58(12):1689-1697. doi: 10.1021/acs.biochem.8b01303. Epub 2019 Mar 11.
3
Fiat Luc: Bioluminescence Imaging Reveals In Vivo Viral Replication Dynamics.
PLoS Pathog. 2015 Sep 10;11(9):e1005081. doi: 10.1371/journal.ppat.1005081. eCollection 2015 Sep.
6
Self-illuminating quantum dots light the way.
Nat Biotechnol. 2006 Mar;24(3):326-8. doi: 10.1038/nbt0306-326.
7
Coelenterazine analogues emit red-shifted bioluminescence with NanoLuc.
Org Biomol Chem. 2017 Oct 18;15(40):8559-8567. doi: 10.1039/c7ob01985h.
8
Development and Applications of Bioluminescent and Chemiluminescent Reporters and Biosensors.
Annu Rev Anal Chem (Palo Alto Calif). 2019 Jun 12;12(1):129-150. doi: 10.1146/annurev-anchem-061318-115027. Epub 2019 Feb 20.
9
Bioluminescent coelenterazine derivatives with imidazopyrazinone C-6 extended substitution.
Chem Commun (Camb). 2015;51(2):391-4. doi: 10.1039/c4cc06886f. Epub 2014 Nov 18.
10
Highly bright and stable NIR-BRET with blue-shifted coelenterazine derivatives for deep-tissue imaging of molecular events .
Theranostics. 2019 Apr 13;9(9):2646-2661. doi: 10.7150/thno.32219. eCollection 2019.

引用本文的文献

1
Autonomous bioluminescence emission from transgenic mice.
Sci Adv. 2025 Jul 11;11(28):eads0463. doi: 10.1126/sciadv.ads0463. Epub 2025 Jul 9.
2
De novo luciferases enable multiplexed bioluminescence imaging.
Chem. 2025 Mar 13;11(3). doi: 10.1016/j.chempr.2024.10.013. Epub 2024 Nov 12.
3
An optimized luciferin formulation for NanoLuc-based in vivo bioluminescence imaging.
Sci Rep. 2025 Apr 15;15(1):12884. doi: 10.1038/s41598-025-97366-9.
4
PEGylated ATP-Independent Luciferins for Noninvasive High-Sensitivity High-Speed Bioluminescence Imaging.
ACS Chem Biol. 2025 Jan 17;20(1):128-136. doi: 10.1021/acschembio.4c00601. Epub 2024 Dec 23.
5
Optimized multispectral bioluminescent imaging of tumor biology using engineered BRET reporters.
iScience. 2024 Aug 8;27(9):110655. doi: 10.1016/j.isci.2024.110655. eCollection 2024 Sep 20.
6
Bioluminescence Imaging of Potassium Ion Using a Sensory Luciferin and an Engineered Luciferase.
J Am Chem Soc. 2024 May 15;146(19):13406-13416. doi: 10.1021/jacs.4c02473. Epub 2024 May 2.
8
De novo design of luciferases using deep learning.
Nature. 2023 Feb;614(7949):774-780. doi: 10.1038/s41586-023-05696-3. Epub 2023 Feb 22.
9
Engineered Amber-Emitting Nano Luciferase and Its Use for Immunobioluminescence Imaging .
J Am Chem Soc. 2022 Aug 10;144(31):14101-14111. doi: 10.1021/jacs.2c02320. Epub 2022 Aug 1.

本文引用的文献

1
Development and Applications of Bioluminescent and Chemiluminescent Reporters and Biosensors.
Annu Rev Anal Chem (Palo Alto Calif). 2019 Jun 12;12(1):129-150. doi: 10.1146/annurev-anchem-061318-115027. Epub 2019 Feb 20.
2
Multicolour In Vivo Bioluminescence Imaging Using a NanoLuc-Based BRET Reporter in Combination with Firefly Luciferase.
Contrast Media Mol Imaging. 2018 Dec 3;2018:2514796. doi: 10.1155/2018/2514796. eCollection 2018.
3
Advances in bioluminescence imaging: new probes from old recipes.
Curr Opin Chem Biol. 2018 Aug;45:148-156. doi: 10.1016/j.cbpa.2018.05.009. Epub 2018 Jun 5.
4
Single-cell bioluminescence imaging of deep tissue in freely moving animals.
Science. 2018 Feb 23;359(6378):935-939. doi: 10.1126/science.aaq1067.
5
Red-shifted luciferase-luciferin pairs for enhanced bioluminescence imaging.
Nat Methods. 2017 Oct;14(10):971-974. doi: 10.1038/nmeth.4400. Epub 2017 Sep 4.
6
In Vivo Molecular Bioluminescence Imaging: New Tools and Applications.
Trends Biotechnol. 2017 Jul;35(7):640-652. doi: 10.1016/j.tibtech.2017.03.012. Epub 2017 May 10.
7
Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules.
Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2958-2963. doi: 10.1073/pnas.1616457114. Epub 2017 Feb 28.
8
10
Bioluminescence imaging in live cells and animals.
Neurophotonics. 2016 Apr;3(2):025001. doi: 10.1117/1.NPh.3.2.025001. Epub 2016 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验