Suppr超能文献

一种抑制媒介传播疾病的减少与替代策略:来自随机空间模型的见解

A reduce and replace strategy for suppressing vector-borne diseases: insights from a stochastic, spatial model.

作者信息

Okamoto Kenichi W, Robert Michael A, Lloyd Alun L, Gould Fred

机构信息

Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America.

Department of Mathematics and Biomathematics Graduate Program, North Carolina State University, Raleigh, North Carolina, United States of America.

出版信息

PLoS One. 2013 Dec 20;8(12):e81860. doi: 10.1371/journal.pone.0081860. eCollection 2013.

Abstract

Two basic strategies have been proposed for using transgenic Aedes aegypti mosquitoes to decrease dengue virus transmission: population reduction and population replacement. Here we model releases of a strain of Ae. aegypti carrying both a gene causing conditional adult female mortality and a gene blocking virus transmission into a wild population to assess whether such releases could reduce the number of competent vectors. We find this "reduce and replace" strategy can decrease the frequency of competent vectors below 50% two years after releases end. Therefore, this combined approach appears preferable to releasing a strain carrying only a female-killing gene, which is likely to merely result in temporary population suppression. However, the fixation of anti-pathogen genes in the population is unlikely. Genetic drift at small population sizes and the spatially heterogeneous nature of the population recovery after releases end prevent complete replacement of the competent vector population. Furthermore, releasing more individuals can be counter-productive in the face of immigration by wild-type mosquitoes, as greater population reduction amplifies the impact wild-type migrants have on the long-term frequency of the anti-pathogen gene. We expect the results presented here to give pause to expectations for driving an anti-pathogen construct to fixation by relying on releasing individuals carrying this two-gene construct. Nevertheless, in some dengue-endemic environments, a spatially heterogeneous decrease in competent vectors may still facilitate decreasing disease incidence.

摘要

利用转基因埃及伊蚊来减少登革热病毒传播已提出两种基本策略

种群减少和种群替代。在此,我们对携带一种导致成年雌蚊有条件死亡的基因以及一种阻断病毒传播的基因的埃及伊蚊品系释放到野生种群中的情况进行建模,以评估这种释放是否能减少易感病媒的数量。我们发现,这种“减少并替代”策略在释放结束两年后可将易感病媒的频率降低至50%以下。因此,相较于仅释放携带杀雌基因的品系(这可能只会导致种群暂时受到抑制),这种联合方法似乎更可取。然而,抗病原体基因在种群中固定下来的可能性不大。小种群规模下的遗传漂变以及释放结束后种群恢复的空间异质性,使得无法完全替代易感病媒种群。此外,面对野生型蚊子的迁入,释放更多个体可能会适得其反,因为更大程度的种群减少会放大野生型迁入者对抗病原体基因长期频率的影响。我们预计这里给出的结果会让人对依靠释放携带这种双基因构建体的个体来使抗病原体构建体固定下来的期望有所迟疑。尽管如此,在一些登革热流行的环境中,易感病媒在空间上的异质性减少仍可能有助于降低疾病发病率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c94d/3869666/4cec5a3ec204/pone.0081860.g001.jpg

相似文献

1
A reduce and replace strategy for suppressing vector-borne diseases: insights from a stochastic, spatial model.
PLoS One. 2013 Dec 20;8(12):e81860. doi: 10.1371/journal.pone.0081860. eCollection 2013.
2
Feasible introgression of an anti-pathogen transgene into an urban mosquito population without using gene-drive.
PLoS Negl Trop Dis. 2014 Jul 3;8(7):e2827. doi: 10.1371/journal.pntd.0002827. eCollection 2014 Jul.
3
A reduce and replace strategy for suppressing vector-borne diseases: insights from a deterministic model.
PLoS One. 2013 Sep 4;8(9):e73233. doi: 10.1371/journal.pone.0073233. eCollection 2013.
5
Wolbachia Reduces the Transmission Potential of Dengue-Infected Aedes aegypti.
PLoS Negl Trop Dis. 2015 Jun 26;9(6):e0003894. doi: 10.1371/journal.pntd.0003894. eCollection 2015.
7
Genetic elimination of dengue vector mosquitoes.
Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4772-5. doi: 10.1073/pnas.1019295108. Epub 2011 Mar 7.
8
Comparison of vector competence of Aedes mediovittatus and Aedes aegypti for dengue virus: implications for dengue control in the Caribbean.
PLoS Negl Trop Dis. 2015 Feb 6;9(2):e0003462. doi: 10.1371/journal.pntd.0003462. eCollection 2015 Feb.
10
Population genetic structure of Aedes aegypti, the principal vector of dengue viruses.
Infect Genet Evol. 2011 Mar;11(2):253-61. doi: 10.1016/j.meegid.2010.11.020. Epub 2010 Dec 15.

引用本文的文献

1
2
Testing non-autonomous antimalarial gene drive effectors using self-eliminating drivers in the African mosquito vector Anopheles gambiae.
PLoS Genet. 2022 Jun 2;18(6):e1010244. doi: 10.1371/journal.pgen.1010244. eCollection 2022 Jun.
3
Gene Drive Dynamics in Natural Populations: The Importance of Density Dependence, Space, and Sex.
Annu Rev Ecol Evol Syst. 2020 Nov;51(1):505-531. doi: 10.1146/annurev-ecolsys-031120-101013. Epub 2020 Aug 28.
5
Quantifying the efficacy of genetic shifting in control of mosquito-borne diseases.
Evol Appl. 2019 Jun 14;12(8):1552-1568. doi: 10.1111/eva.12802. eCollection 2019 Sep.
6
and Models to Study Mosquito-Borne Flavivirus Neuropathogenesis, Prevention, and Treatment.
Front Cell Infect Microbiol. 2019 Jul 9;9:223. doi: 10.3389/fcimb.2019.00223. eCollection 2019.
7
Identification of microRNAs expressed in the midgut of Aedes albopictus during dengue infection.
Parasit Vectors. 2017 Feb 3;10(1):63. doi: 10.1186/s13071-017-1966-2.
8
Integrating Transgenic Vector Manipulation with Clinical Interventions to Manage Vector-Borne Diseases.
PLoS Comput Biol. 2016 Mar 10;12(3):e1004695. doi: 10.1371/journal.pcbi.1004695. eCollection 2016 Mar.
9
Control of Mosquito-Borne Infectious Diseases: Sex and Gene Drive.
Trends Parasitol. 2016 Mar;32(3):219-229. doi: 10.1016/j.pt.2015.12.003. Epub 2016 Feb 17.
10
A critical assessment of vector control for dengue prevention.
PLoS Negl Trop Dis. 2015 May 7;9(5):e0003655. doi: 10.1371/journal.pntd.0003655. eCollection 2015 May.

本文引用的文献

1
Gene-drive into insect populations with age and spatial structure: a theoretical assessment.
Evol Appl. 2011 May;4(3):415-28. doi: 10.1111/j.1752-4571.2010.00153.x. Epub 2010 Sep 14.
2
Towards the genetic control of insect vectors: An overview.
Entomol Res. 2007 Dec;37(4):213-220. doi: 10.1111/j.1748-5967.2007.00117.x.
3
A reduce and replace strategy for suppressing vector-borne diseases: insights from a deterministic model.
PLoS One. 2013 Sep 4;8(9):e73233. doi: 10.1371/journal.pone.0073233. eCollection 2013.
4
The global distribution and burden of dengue.
Nature. 2013 Apr 25;496(7446):504-7. doi: 10.1038/nature12060. Epub 2013 Apr 7.
6
Assessing the feasibility of controlling Aedes aegypti with transgenic methods: a model-based evaluation.
PLoS One. 2012;7(12):e52235. doi: 10.1371/journal.pone.0052235. Epub 2012 Dec 21.
7
Open field release of genetically engineered sterile male Aedes aegypti in Malaysia.
PLoS One. 2012;7(8):e42771. doi: 10.1371/journal.pone.0042771. Epub 2012 Aug 27.
9
Flight performance and teneral energy reserves of two genetically-modified and one wild-type strain of the yellow fever mosquito Aedes aegypti.
Vector Borne Zoonotic Dis. 2012 Dec;12(12):1053-8. doi: 10.1089/vbz.2012.0994. Epub 2012 Jul 26.
10
Modelling the spread of Wolbachia in spatially heterogeneous environments.
J R Soc Interface. 2012 Nov 7;9(76):3045-54. doi: 10.1098/rsif.2012.0253. Epub 2012 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验