文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

体外抗真菌唑类药物伊曲康唑和泊沙康唑对亚马逊利什曼原虫的活性。

In vitro activity of the antifungal azoles itraconazole and posaconazole against Leishmania amazonensis.

机构信息

Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil ; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil.

Instituto Venezolano de Investigaciones Científicas, Centro de Bioquímica y Biofísica, Caracas, Venezuela.

出版信息

PLoS One. 2013 Dec 23;8(12):e83247. doi: 10.1371/journal.pone.0083247. eCollection 2013.


DOI:10.1371/journal.pone.0083247
PMID:24376670
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3871555/
Abstract

Leishmaniasis, caused by protozoan parasites of the Leishmania genus, is one of the most prevalent neglected tropical diseases. It is endemic in 98 countries, causing considerable morbidity and mortality. Pentavalent antimonials are the first line of treatment for leishmaniasis except in India. In resistant cases, miltefosine, amphotericin B and pentamidine are used. These treatments are unsatisfactory due to toxicity, limited efficacy, high cost and difficult administration. Thus, there is an urgent need to develop drugs that are efficacious, safe, and more accessible to patients. Trypanosomatids, including Leishmania spp. and Trypanosoma cruzi, have an essential requirement for ergosterol and other 24-alkyl sterols, which are absent in mammalian cells. Inhibition of ergosterol biosynthesis is increasingly recognized as a promising target for the development of new chemotherapeutic agents. The aim of this work was to investigate the antiproliferative, physiological and ultrastructural effects against Leishmania amazonensis of itraconazole (ITZ) and posaconazole (POSA), two azole antifungal agents that inhibit sterol C14α-demethylase (CYP51). Antiproliferative studies demonstrated potent activity of POSA and ITZ: for promastigotes, the IC50 values were 2.74 µM and 0.44 µM for POSA and ITZ, respectively, and for intracellular amastigotes, the corresponding values were 1.63 µM and 0.08 µM, for both stages after 72 h of treatment. Physiological studies revealed that both inhibitors induced a collapse of the mitochondrial membrane potential (ΔΨm), which was consistent with ultrastructural alterations in the mitochondrion. Intense mitochondrial swelling, disorganization and rupture of mitochondrial membranes were observed by transmission electron microscopy. In addition, accumulation of lipid bodies, appearance of autophagosome-like structures and alterations in the kinetoplast were also observed. In conclusion, our results indicate that ITZ and POSA are potent inhibitors of L. amazonensis and suggest that these drugs could represent novel therapies for the treatment of leishmaniasis, either alone or in combination with other agents.

摘要

利什曼病是由利什曼原虫属的原生动物寄生虫引起的,是最流行的被忽视的热带病之一。它在 98 个国家流行,导致相当高的发病率和死亡率。除印度外,五价锑剂是利什曼病的一线治疗药物。在耐药病例中,米替福新、两性霉素 B 和喷他脒被使用。这些治疗方法因毒性、疗效有限、成本高和给药困难而不理想。因此,迫切需要开发有效、安全且更易于患者获得的药物。原生动物门生物,包括利什曼原虫属和克氏锥虫,对麦角固醇和其他 24-烷基固醇有基本需求,而哺乳动物细胞中不存在这些固醇。抑制麦角固醇生物合成越来越被认为是开发新化疗药物的有前途的目标。本工作的目的是研究伊曲康唑(ITZ)和泊沙康唑(POSA)对亚马逊利什曼原虫的增殖、生理和超微结构的影响,这两种唑类抗真菌药物抑制甾醇 C14α-去甲基酶(CYP51)。增殖研究表明 POSA 和 ITZ 具有很强的活性:对于前鞭毛体,POSA 和 ITZ 的 IC50 值分别为 2.74 μM 和 0.44 μM,对于内阿米巴原虫,相应的值分别为 1.63 μM 和 0.08 μM,均为治疗后 72 小时的两个阶段。生理研究表明,两种抑制剂均诱导线粒体膜电位(ΔΨm)崩溃,这与线粒体的超微结构改变一致。透射电子显微镜观察到线粒体强烈肿胀、线粒体膜结构紊乱和破裂。此外,还观察到脂质体积累、自噬体样结构出现和动基体改变。总之,我们的结果表明 ITZ 和 POSA 是亚马逊利什曼原虫的有效抑制剂,并表明这些药物可能代表治疗利什曼病的新疗法,无论是单独使用还是与其他药物联合使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8d/3871555/3b30e584f5e8/pone.0083247.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8d/3871555/a4cb98f36b36/pone.0083247.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8d/3871555/0c3b79c18b49/pone.0083247.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8d/3871555/31f8b412a91d/pone.0083247.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8d/3871555/2269d186e782/pone.0083247.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8d/3871555/1482209c27e0/pone.0083247.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8d/3871555/22bc22a11ad1/pone.0083247.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8d/3871555/c2b79ef52f56/pone.0083247.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8d/3871555/5ad8226254d6/pone.0083247.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8d/3871555/3b30e584f5e8/pone.0083247.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8d/3871555/a4cb98f36b36/pone.0083247.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8d/3871555/0c3b79c18b49/pone.0083247.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8d/3871555/31f8b412a91d/pone.0083247.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8d/3871555/2269d186e782/pone.0083247.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8d/3871555/1482209c27e0/pone.0083247.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8d/3871555/22bc22a11ad1/pone.0083247.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8d/3871555/c2b79ef52f56/pone.0083247.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8d/3871555/5ad8226254d6/pone.0083247.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8d/3871555/3b30e584f5e8/pone.0083247.g009.jpg

相似文献

[1]
In vitro activity of the antifungal azoles itraconazole and posaconazole against Leishmania amazonensis.

PLoS One. 2013-12-23

[2]
Potent In Vitro Antiproliferative Synergism of Combinations of Ergosterol Biosynthesis Inhibitors against Leishmania amazonensis.

Antimicrob Agents Chemother. 2015-10

[3]
In vitro antileishmanial activity of ravuconazole, a triazole antifungal drug, as a potential treatment for leishmaniasis.

J Antimicrob Chemother. 2018-9-1

[4]
A novel alkyl phosphocholine-dinitroaniline hybrid molecule exhibits biological activity in vitro against Leishmania amazonensis.

Exp Parasitol. 2013-7-8

[5]
Antiproliferative and ultrastructural effects of BPQ-OH, a specific inhibitor of squalene synthase, on Leishmania amazonensis.

Exp Parasitol. 2005-12

[6]
In vitro activities of ER-119884 and E5700, two potent squalene synthase inhibitors, against Leishmania amazonensis: antiproliferative, biochemical, and ultrastructural effects.

Antimicrob Agents Chemother. 2008-11

[7]
Mitochondrial damage contribute to epigallocatechin-3-gallate induced death in Leishmania amazonensis.

Exp Parasitol. 2012-6-23

[8]
Naturally azole-resistant Leishmania braziliensis promastigotes are rendered susceptible in the presence of terbinafine: comparative study with azole-susceptible Leishmania mexicana promastigotes.

Antimicrob Agents Chemother. 1996-12

[9]
The stepwise selection for ketoconazole resistance induces upregulation of C14-demethylase (CYP51) in Leishmania amazonensis.

Mem Inst Oswaldo Cruz. 2012-5

[10]
Squalene synthase as a chemotherapeutic target in Trypanosoma cruzi and Leishmania mexicana.

Mol Biochem Parasitol. 2002

引用本文的文献

[1]
Progress and Prospects of Triazoles in Advanced Therapies for Parasitic Diseases.

Trop Med Infect Dis. 2025-5-20

[2]
Itraconazole promotes melanoma cells apoptosis via inhibiting hedgehog signaling pathway-mediated autophagy.

Front Pharmacol. 2025-1-23

[3]
Natural Product Identification and Molecular Docking Studies of Leishmania Major Pteridine Reductase Inhibitors.

Pharmaceuticals (Basel). 2024-12-24

[4]
CYP5122A1 encodes an essential sterol C4-methyl oxidase in Leishmania donovani and determines the antileishmanial activity of antifungal azoles.

Nat Commun. 2024-10-31

[5]
PUF3 RNA binding protein of regulates mitochondrial morphology and function.

Heliyon. 2024-6-14

[6]
Characterization of the Effect of -(2-Methoxyphenyl)-1-methyl-1-benzimidazol-2-amine, Compound 8, against and Its In Vivo Leishmanicidal Activity.

Int J Mol Sci. 2024-1-4

[7]
Characterization of the extracellular vesicles, ultrastructural morphology, and intercellular interactions of multiple clinical isolates of the brain-eating amoeba, .

Front Microbiol. 2023-9-27

[8]
Synthesis of 1,2,3-Triazole-Containing Methoxylated Cinnamides and Their Antileishmanial Activity against the Species.

Pharmaceuticals (Basel). 2023-8-7

[9]
PLGA Nanoparticles as New Drug Delivery Systems in Leishmaniasis Chemotherapy: A Review of Current Practices.

Curr Med Chem. 2024

[10]
Amphotericin B resistance in Leishmania mexicana: Alterations to sterol metabolism and oxidative stress response.

PLoS Negl Trop Dis. 2022-9

本文引用的文献

[1]
Guidelines for the use and interpretation of assays for monitoring autophagy.

Autophagy. 2012-4

[2]
Leishmaniasis worldwide and global estimates of its incidence.

PLoS One. 2012-5-31

[3]
Effects of amiodarone and posaconazole on the growth and ultrastructure of Trypanosoma cruzi.

Int J Antimicrob Agents. 2012-5-14

[4]
Efficacy of miltefosine treatment in Leishmania amazonensis-infected BALB/c mice.

Int J Antimicrob Agents. 2012-1-9

[5]
Antiproliferative, Ultrastructural, and Physiological Effects of Amiodarone on Promastigote and Amastigote Forms of Leishmania amazonensis.

Mol Biol Int. 2011

[6]
Cryptolepine-Induced Cell Death of Leishmania donovani Promastigotes Is Augmented by Inhibition of Autophagy.

Mol Biol Int. 2011

[7]
Successful treatment of Old World cutaneous leishmaniasis caused by Leishmania infantum with posaconazole.

Antimicrob Agents Chemother. 2011-1-31

[8]
Current diagnosis and treatment of cutaneous and mucocutaneous leishmaniasis.

Expert Rev Anti Infect Ther. 2010-4

[9]
Combination therapy for visceral leishmaniasis.

Lancet Infect Dis. 2010-3

[10]
Cutaneous leishmaniasis treated with itraconazole.

Dermatol Ther. 2009-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索