Ortega-Martorell Sandra, Ruiz Héctor, Vellido Alfredo, Olier Iván, Romero Enrique, Julià-Sapé Margarida, Martín José D, Jarman Ian H, Arús Carles, Lisboa Paulo J G
Department of Mathematics and Statistics, Liverpool John Moores University, Liverpool, United Kingdom.
Department of Computer Languages and Systems, Universitat Politècnica de Catalunya - BarcelonaTech, Barcelona, Spain.
PLoS One. 2013 Dec 23;8(12):e83773. doi: 10.1371/journal.pone.0083773. eCollection 2013.
The clinical investigation of human brain tumors often starts with a non-invasive imaging study, providing information about the tumor extent and location, but little insight into the biochemistry of the analyzed tissue. Magnetic Resonance Spectroscopy can complement imaging by supplying a metabolic fingerprint of the tissue. This study analyzes single-voxel magnetic resonance spectra, which represent signal information in the frequency domain. Given that a single voxel may contain a heterogeneous mix of tissues, signal source identification is a relevant challenge for the problem of tumor type classification from the spectroscopic signal.
METHODOLOGY/PRINCIPAL FINDINGS: Non-negative matrix factorization techniques have recently shown their potential for the identification of meaningful sources from brain tissue spectroscopy data. In this study, we use a convex variant of these methods that is capable of handling negatively-valued data and generating sources that can be interpreted as tumor class prototypes. A novel approach to convex non-negative matrix factorization is proposed, in which prior knowledge about class information is utilized in model optimization. Class-specific information is integrated into this semi-supervised process by setting the metric of a latent variable space where the matrix factorization is carried out. The reported experimental study comprises 196 cases from different tumor types drawn from two international, multi-center databases. The results indicate that the proposed approach outperforms a purely unsupervised process by achieving near perfect correlation of the extracted sources with the mean spectra of the tumor types. It also improves tissue type classification.
CONCLUSIONS/SIGNIFICANCE: We show that source extraction by unsupervised matrix factorization benefits from the integration of the available class information, so operating in a semi-supervised learning manner, for discriminative source identification and brain tumor labeling from single-voxel spectroscopy data. We are confident that the proposed methodology has wider applicability for biomedical signal processing.
对人脑肿瘤的临床研究通常始于非侵入性成像研究,该研究可提供有关肿瘤范围和位置的信息,但对所分析组织的生物化学情况了解甚少。磁共振波谱可通过提供组织的代谢指纹图谱来补充成像信息。本研究分析单像素磁共振波谱,其代表频域中的信号信息。鉴于单个像素可能包含异质的组织混合,信号源识别是从波谱信号进行肿瘤类型分类问题中的一个相关挑战。
方法/主要发现:非负矩阵分解技术最近已显示出从脑组织波谱数据中识别有意义信号源的潜力。在本研究中,我们使用这些方法的一种凸变体,它能够处理负值数据并生成可解释为肿瘤类别原型的信号源。提出了一种凸非负矩阵分解的新方法,其中在模型优化中利用了有关类别信息的先验知识。通过设置进行矩阵分解的潜在变量空间的度量,将特定类别的信息整合到这个半监督过程中。所报告的实验研究包括来自两个国际多中心数据库的196例不同肿瘤类型的病例。结果表明,所提出的方法通过使提取的信号源与肿瘤类型的平均波谱实现近乎完美的相关性,优于纯无监督过程。它还改善了组织类型分类。
结论/意义:我们表明,通过无监督矩阵分解进行信号源提取受益于可用类别信息的整合,因此以半监督学习方式运行,可用于从单像素波谱数据中进行判别性信号源识别和脑肿瘤标记。我们相信所提出的方法在生物医学信号处理方面具有更广泛的适用性。