Suppr超能文献

药物处理的分化干细胞中浓度依赖性转录组偏差的设计原则

Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells.

作者信息

Waldmann Tanja, Rempel Eugen, Balmer Nina V, König André, Kolde Raivo, Gaspar John Antonydas, Henry Margit, Hescheler Jürgen, Sachinidis Agapios, Rahnenführer Jörg, Hengstler Jan G, Leist Marcel

机构信息

Doerenkamp-Zbinden Chair for in Vitro Toxicology and Biomedicine, University of Konstanz , 78457 Konstanz, Germany.

出版信息

Chem Res Toxicol. 2014 Mar 17;27(3):408-20. doi: 10.1021/tx400402j. Epub 2014 Jan 21.

Abstract

Information on design principles governing transcriptome changes upon transition from safe to hazardous drug concentrations or from tolerated to cytotoxic drug levels are important for the application of toxicogenomics data in developmental toxicology. Here, we tested the effect of eight concentrations of valproic acid (VPA; 25-1000 μM) in an assay that recapitulates the development of human embryonic stem cells to neuroectoderm. Cells were exposed to the drug during the entire differentiation process, and the number of differentially regulated genes increased continuously over the concentration range from zero to about 3000. We identified overrepresented transcription factor binding sites (TFBS) as well as superordinate cell biological processes, and we developed a gene ontology (GO) activation profiler, as well as a two-dimensional teratogenicity index. Analysis of the transcriptome data set by the above biostatistical and systems biology approaches yielded the following insights: (i) tolerated (≤25 μM), deregulated/teratogenic (150-550 μM), and cytotoxic (≥800 μM) concentrations could be differentiated. (ii) Biological signatures related to the mode of action of VPA, such as protein acetylation, developmental changes, and cell migration, emerged from the teratogenic concentrations range. (iii) Cytotoxicity was not accompanied by signatures of newly emerging canonical cell death/stress indicators, but by catabolism and decreased expression of cell cycle associated genes. (iv) Most, but not all of the GO groups and TFBS seen at the highest concentrations were already overrepresented at 350-450 μM. (v) The teratogenicity index reflected this behavior, and thus differed strongly from cytotoxicity. Our findings suggest the use of the highest noncytotoxic drug concentration for gene array toxicogenomics studies, as higher concentrations possibly yield wrong information on the mode of action, and lower drug levels result in decreased gene expression changes and thus a reduced power of the study.

摘要

关于从安全药物浓度转变为有害药物浓度或从耐受药物水平转变为细胞毒性药物水平时转录组变化的设计原则信息,对于毒理基因组学数据在发育毒理学中的应用非常重要。在此,我们在一项模拟人类胚胎干细胞向神经外胚层发育的实验中测试了八种浓度丙戊酸(VPA;25 - 1000 μM)的效果。在整个分化过程中,细胞接触该药物,差异调节基因的数量在从零到约3000的浓度范围内持续增加。我们确定了过度富集的转录因子结合位点(TFBS)以及上位细胞生物学过程,并开发了一个基因本体(GO)激活分析器以及一个二维致畸指数。通过上述生物统计学和系统生物学方法对转录组数据集进行分析,得出以下见解:(i)可以区分耐受浓度(≤25 μM)、失调/致畸浓度(150 - 550 μM)和细胞毒性浓度(≥800 μM)。(ii)与VPA作用模式相关的生物学特征,如蛋白质乙酰化、发育变化和细胞迁移,出现在致畸浓度范围内。(iii)细胞毒性并未伴随着新出现的典型细胞死亡/应激指标的特征,而是伴随着分解代谢以及细胞周期相关基因表达的降低。(iv)在最高浓度下出现的大多数(但不是全部)GO组和TFBS在350 - 450 μM时就已经过度富集。(v)致畸指数反映了这种行为,因此与细胞毒性有很大差异。我们的研究结果表明,在基因阵列毒理基因组学研究中应使用最高的非细胞毒性药物浓度,因为更高的浓度可能会产生关于作用模式的错误信息,而较低的药物水平会导致基因表达变化减少,从而降低研究的效力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f3d/3958134/1407298efc8b/tx-2013-00402j_0002.jpg

相似文献

1
Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells.
Chem Res Toxicol. 2014 Mar 17;27(3):408-20. doi: 10.1021/tx400402j. Epub 2014 Jan 21.
2
Stem Cell Transcriptome Responses and Corresponding Biomarkers That Indicate the Transition from Adaptive Responses to Cytotoxicity.
Chem Res Toxicol. 2017 Apr 17;30(4):905-922. doi: 10.1021/acs.chemrestox.6b00259. Epub 2016 Dec 21.
7
Short-time gene expression response to valproic acid and valproic acid analogs in mouse embryonic stem cells.
Toxicol Sci. 2011 Jun;121(2):328-42. doi: 10.1093/toxsci/kfr070. Epub 2011 Apr 6.
8
Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach.
Arch Toxicol. 2013 Jan;87(1):123-43. doi: 10.1007/s00204-012-0967-3. Epub 2012 Nov 21.
10
A comparative transcriptomic study on the effects of valproic acid on two different hESCs lines in a neural teratogenicity test system.
Toxicol Lett. 2014 Nov 18;231(1):38-44. doi: 10.1016/j.toxlet.2014.08.023. Epub 2014 Sep 2.

引用本文的文献

1
In vitro models of valproic acid to assess neurodevelopmental toxicity: A scoping review.
Epilepsia. 2025 Jul;66(7):2170-2181. doi: 10.1111/epi.18392. Epub 2025 Mar 28.
3
Performance assessment and economic analysis of a human Liver-Chip for predictive toxicology.
Commun Med (Lond). 2022 Dec 6;2(1):154. doi: 10.1038/s43856-022-00209-1.
5
Generation of Human Nociceptor-Enriched Sensory Neurons for the Study of Pain-Related Dysfunctions.
Stem Cells Transl Med. 2022 Jul 20;11(7):727-741. doi: 10.1093/stcltm/szac031.
6
Optimization of the TeraTox Assay for Preclinical Teratogenicity Assessment.
Toxicol Sci. 2022 Jun 28;188(1):17-33. doi: 10.1093/toxsci/kfac046.
7
Classification of Developmental Toxicants in a Human iPSC Transcriptomics-Based Test.
Chem Res Toxicol. 2022 May 16;35(5):760-773. doi: 10.1021/acs.chemrestox.1c00392. Epub 2022 Apr 13.
10
A human stem cell-derived test system for agents modifying neuronal N-methyl-D-aspartate-type glutamate receptor Ca-signalling.
Arch Toxicol. 2021 May;95(5):1703-1722. doi: 10.1007/s00204-021-03024-0. Epub 2021 Mar 13.

本文引用的文献

1
Super-enhancers in the control of cell identity and disease.
Cell. 2013 Nov 7;155(4):934-47. doi: 10.1016/j.cell.2013.09.053. Epub 2013 Oct 10.
2
Post-approval safety issues with innovative drugs: a European cohort study.
Drug Saf. 2013 Nov;36(11):1105-15. doi: 10.1007/s40264-013-0094-y.
3
miRNA expression profiling in a human stem cell-based model as a tool for developmental neurotoxicity testing.
Cell Biol Toxicol. 2013 Aug;29(4):239-57. doi: 10.1007/s10565-013-9250-5. Epub 2013 Aug 1.
5
Evaluation of a human neurite growth assay as specific screen for developmental neurotoxicants.
Arch Toxicol. 2013 Dec;87(12):2215-31. doi: 10.1007/s00204-013-1072-y. Epub 2013 May 14.
6
Metabolomics in toxicology and preclinical research.
ALTEX. 2013;30(2):209-25. doi: 10.14573/altex.2013.2.209.
7
Temporal concordance between apical and transcriptional points of departure for chemical risk assessment.
Toxicol Sci. 2013 Jul;134(1):180-94. doi: 10.1093/toxsci/kft094. Epub 2013 Apr 17.
8
Selective inhibition of tumor oncogenes by disruption of super-enhancers.
Cell. 2013 Apr 11;153(2):320-34. doi: 10.1016/j.cell.2013.03.036.
9
Master transcription factors and mediator establish super-enhancers at key cell identity genes.
Cell. 2013 Apr 11;153(2):307-19. doi: 10.1016/j.cell.2013.03.035.
10
Current status of human pluripotent stem cell based in vitro toxicity tests.
Front Biosci (Schol Ed). 2013 Jan 1;5(1):118-33. doi: 10.2741/s361.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验