Waldmann Tanja, Rempel Eugen, Balmer Nina V, König André, Kolde Raivo, Gaspar John Antonydas, Henry Margit, Hescheler Jürgen, Sachinidis Agapios, Rahnenführer Jörg, Hengstler Jan G, Leist Marcel
Doerenkamp-Zbinden Chair for in Vitro Toxicology and Biomedicine, University of Konstanz , 78457 Konstanz, Germany.
Chem Res Toxicol. 2014 Mar 17;27(3):408-20. doi: 10.1021/tx400402j. Epub 2014 Jan 21.
Information on design principles governing transcriptome changes upon transition from safe to hazardous drug concentrations or from tolerated to cytotoxic drug levels are important for the application of toxicogenomics data in developmental toxicology. Here, we tested the effect of eight concentrations of valproic acid (VPA; 25-1000 μM) in an assay that recapitulates the development of human embryonic stem cells to neuroectoderm. Cells were exposed to the drug during the entire differentiation process, and the number of differentially regulated genes increased continuously over the concentration range from zero to about 3000. We identified overrepresented transcription factor binding sites (TFBS) as well as superordinate cell biological processes, and we developed a gene ontology (GO) activation profiler, as well as a two-dimensional teratogenicity index. Analysis of the transcriptome data set by the above biostatistical and systems biology approaches yielded the following insights: (i) tolerated (≤25 μM), deregulated/teratogenic (150-550 μM), and cytotoxic (≥800 μM) concentrations could be differentiated. (ii) Biological signatures related to the mode of action of VPA, such as protein acetylation, developmental changes, and cell migration, emerged from the teratogenic concentrations range. (iii) Cytotoxicity was not accompanied by signatures of newly emerging canonical cell death/stress indicators, but by catabolism and decreased expression of cell cycle associated genes. (iv) Most, but not all of the GO groups and TFBS seen at the highest concentrations were already overrepresented at 350-450 μM. (v) The teratogenicity index reflected this behavior, and thus differed strongly from cytotoxicity. Our findings suggest the use of the highest noncytotoxic drug concentration for gene array toxicogenomics studies, as higher concentrations possibly yield wrong information on the mode of action, and lower drug levels result in decreased gene expression changes and thus a reduced power of the study.
关于从安全药物浓度转变为有害药物浓度或从耐受药物水平转变为细胞毒性药物水平时转录组变化的设计原则信息,对于毒理基因组学数据在发育毒理学中的应用非常重要。在此,我们在一项模拟人类胚胎干细胞向神经外胚层发育的实验中测试了八种浓度丙戊酸(VPA;25 - 1000 μM)的效果。在整个分化过程中,细胞接触该药物,差异调节基因的数量在从零到约3000的浓度范围内持续增加。我们确定了过度富集的转录因子结合位点(TFBS)以及上位细胞生物学过程,并开发了一个基因本体(GO)激活分析器以及一个二维致畸指数。通过上述生物统计学和系统生物学方法对转录组数据集进行分析,得出以下见解:(i)可以区分耐受浓度(≤25 μM)、失调/致畸浓度(150 - 550 μM)和细胞毒性浓度(≥800 μM)。(ii)与VPA作用模式相关的生物学特征,如蛋白质乙酰化、发育变化和细胞迁移,出现在致畸浓度范围内。(iii)细胞毒性并未伴随着新出现的典型细胞死亡/应激指标的特征,而是伴随着分解代谢以及细胞周期相关基因表达的降低。(iv)在最高浓度下出现的大多数(但不是全部)GO组和TFBS在350 - 450 μM时就已经过度富集。(v)致畸指数反映了这种行为,因此与细胞毒性有很大差异。我们的研究结果表明,在基因阵列毒理基因组学研究中应使用最高的非细胞毒性药物浓度,因为更高的浓度可能会产生关于作用模式的错误信息,而较低的药物水平会导致基因表达变化减少,从而降低研究的效力。