Suppr超能文献

一种用于磁共振组织对比度合成的压缩感知方法。

A compressed sensing approach for MR tissue contrast synthesis.

作者信息

Roy Snehashis, Carass Aaron, Prince Jerry

机构信息

Image Analysis and Communication Laboratory, Dept. of Electrical and Computer Engg., The Johns Hopkins University, USA.

出版信息

Inf Process Med Imaging. 2011;22:371-83. doi: 10.1007/978-3-642-22092-0_31.

Abstract

The tissue contrast of a magnetic resonance (MR) neuroimaging data set has a major impact on image analysis tasks like registration and segmentation. It has been one of the core challenges of medical imaging to guarantee the consistency of these tasks regardless of the contrasts of the MR data. Inconsistencies in image analysis are attributable in part to variations in tissue contrast, which in turn arise from operator variations during image acquisition as well as software and hardware differences in the MR scanners. It is also a common problem that images with a desired tissue contrast are completely missing in a given data set for reasons of cost, acquisition time, forgetfulness, or patient comfort. Absence of this data can hamper the detailed, automatic analysis of some or all data sets in a scientific study. A method to synthesize missing MR tissue contrasts from available acquired images using an atlas containing the desired contrast and a patch-based compressed sensing strategy is described. An important application of this general approach is to synthesize a particular tissue contrast from multiple studies using a single atlas, thereby normalizing all data sets into a common intensity space. Experiments on real data, obtained using different scanners and pulse sequences, show improvement in segmentation consistency, which could be extremely valuable in the pooling of multi-site multi-scanner neuroimaging studies.

摘要

磁共振(MR)神经影像数据集的组织对比度对诸如配准和分割等图像分析任务有重大影响。无论MR数据的对比度如何,保证这些任务的一致性一直是医学成像的核心挑战之一。图像分析中的不一致部分归因于组织对比度的变化,而这种变化又源于图像采集过程中的操作员差异以及MR扫描仪的软件和硬件差异。由于成本、采集时间、疏忽或患者舒适度等原因,给定数据集中完全缺少具有所需组织对比度的图像也是一个常见问题。缺少这些数据会妨碍科学研究中对部分或所有数据集进行详细的自动分析。本文描述了一种使用包含所需对比度的图谱和基于块的压缩感知策略,从可用的采集图像中合成缺失的MR组织对比度的方法。这种通用方法的一个重要应用是使用单个图谱从多个研究中合成特定的组织对比度,从而将所有数据集归一化到一个共同的强度空间。使用不同扫描仪和脉冲序列获得的真实数据实验表明,分割一致性有所提高,这在多站点多扫描仪神经影像研究的汇总中可能极其有价值。

相似文献

2
MR image synthesis by contrast learning on neighborhood ensembles.基于邻域集成对比学习的磁共振图像合成
Med Image Anal. 2015 Aug;24(1):63-76. doi: 10.1016/j.media.2015.05.002. Epub 2015 May 18.
5
Multi-contrast reconstruction with Bayesian compressed sensing.基于贝叶斯压缩感知的多对比度重建。
Magn Reson Med. 2011 Dec;66(6):1601-15. doi: 10.1002/mrm.22956. Epub 2011 Jun 10.
6
Efficient MR image reconstruction for compressed MR imaging.用于压缩磁共振成像的高效磁共振图像重建
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):135-42. doi: 10.1007/978-3-642-15705-9_17.
8
Improved pediatric MR imaging with compressed sensing.压缩感知技术在儿科磁共振成像中的应用进展
Radiology. 2010 Aug;256(2):607-16. doi: 10.1148/radiol.10091218. Epub 2010 Jun 7.

引用本文的文献

9
Anatomic and Molecular MR Image Synthesis Using Confidence Guided CNNs.基于置信引导 CNN 的解剖和分子磁共振图像合成。
IEEE Trans Med Imaging. 2021 Oct;40(10):2832-2844. doi: 10.1109/TMI.2020.3046460. Epub 2021 Sep 30.

本文引用的文献

1
A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms.模糊 ISODATA 聚类算法的一个收敛定理。
IEEE Trans Pattern Anal Mach Intell. 1980 Jan;2(1):1-8. doi: 10.1109/tpami.1980.4766964.
2
Image super-resolution via sparse representation.基于稀疏表示的图像超分辨率重建。
IEEE Trans Image Process. 2010 Nov;19(11):2861-73. doi: 10.1109/TIP.2010.2050625. Epub 2010 May 18.
3
Information measures-based intensity standardization of MRI.基于信息测度的磁共振成像强度标准化
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2233-6. doi: 10.1109/IEMBS.2008.4649640.
9
Sequence-independent segmentation of magnetic resonance images.磁共振图像的序列无关分割
Neuroimage. 2004;23 Suppl 1:S69-84. doi: 10.1016/j.neuroimage.2004.07.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验