Suppr超能文献

利用自然语言处理自动提取纳米颗粒特性:NanoSifter——一种获取聚酰胺-胺型树枝状大分子特性的应用程序

Automatic extraction of nanoparticle properties using natural language processing: NanoSifter an application to acquire PAMAM dendrimer properties.

作者信息

Jones David E, Igo Sean, Hurdle John, Facelli Julio C

机构信息

Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States of America.

Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States of America ; Center for High Performance Computing, University of Utah, Salt Lake City, Utah, United States of America.

出版信息

PLoS One. 2014 Jan 2;9(1):e83932. doi: 10.1371/journal.pone.0083932. eCollection 2014.

Abstract

In this study, we demonstrate the use of natural language processing methods to extract, from nanomedicine literature, numeric values of biomedical property terms of poly(amidoamine) dendrimers. We have developed a method for extracting these values for properties taken from the NanoParticle Ontology, using the General Architecture for Text Engineering and a Nearly-New Information Extraction System. We also created a method for associating the identified numeric values with their corresponding dendrimer properties, called NanoSifter. We demonstrate that our system can correctly extract numeric values of dendrimer properties reported in the cancer treatment literature with high recall, precision, and f-measure. The micro-averaged recall was 0.99, precision was 0.84, and f-measure was 0.91. Similarly, the macro-averaged recall was 0.99, precision was 0.87, and f-measure was 0.92. To our knowledge, these results are the first application of text mining to extract and associate dendrimer property terms and their corresponding numeric values.

摘要

在本研究中,我们展示了使用自然语言处理方法从纳米医学文献中提取聚(酰胺胺)树枝状大分子生物医学特性术语的数值。我们开发了一种方法,利用文本工程通用架构和近新信息提取系统,从纳米粒子本体中提取这些特性的值。我们还创建了一种将识别出的数值与其相应树枝状大分子特性相关联的方法,称为纳米筛选器。我们证明,我们的系统能够以高召回率、精确率和F值正确提取癌症治疗文献中报道的树枝状大分子特性的数值。微观平均召回率为0.99,精确率为0.84,F值为0.91。同样,宏观平均召回率为0.99,精确率为0.87,F值为0.92。据我们所知,这些结果是文本挖掘首次应用于提取和关联树枝状大分子特性术语及其相应的数值。

相似文献

2
Construction of Poly(amidoamine) Dendrimer/Carbon Dot Nanohybrids for Biomedical Applications.
Macromol Biosci. 2021 Apr;21(4):e2100007. doi: 10.1002/mabi.202100007. Epub 2021 Feb 22.
3
Automatic abstraction of imaging observations with their characteristics from mammography reports.
J Am Med Inform Assoc. 2015 Apr;22(e1):e81-92. doi: 10.1136/amiajnl-2014-003009. Epub 2014 Oct 28.
4
Secondary use of electronic health records for building cohort studies through top-down information extraction.
J Biomed Inform. 2015 Feb;53:188-95. doi: 10.1016/j.jbi.2014.10.010. Epub 2014 Nov 21.
5
Ontology-based clinical information extraction from physician's free-text notes.
J Biomed Inform. 2019 Oct;98:103276. doi: 10.1016/j.jbi.2019.103276. Epub 2019 Aug 29.
6
Interactions between PAMAM dendrimers and DOPC lipid multilayers: Membrane thinning and structural disorder.
Biochim Biophys Acta Gen Subj. 2021 Apr;1865(4):129542. doi: 10.1016/j.bbagen.2020.129542. Epub 2020 Jan 24.
9
UMLS content views appropriate for NLP processing of the biomedical literature vs. clinical text.
J Biomed Inform. 2010 Aug;43(4):587-94. doi: 10.1016/j.jbi.2010.02.005. Epub 2010 Feb 10.
10
Text-based knowledge discovery: search and mining of life-sciences documents.
Drug Discov Today. 2002 Jun 1;7(11):S89-98. doi: 10.1016/s1359-6446(02)02286-9.

引用本文的文献

1
Predicting cytotoxicity of PAMAM dendrimers using molecular descriptors.
Beilstein J Nanotechnol. 2015 Sep 11;6:1886-96. doi: 10.3762/bjnano.6.192. eCollection 2015.
2
Framework for automatic information extraction from research papers on nanocrystal devices.
Beilstein J Nanotechnol. 2015 Sep 7;6:1872-82. doi: 10.3762/bjnano.6.190. eCollection 2015.
3
Using natural language processing techniques to inform research on nanotechnology.
Beilstein J Nanotechnol. 2015 Jul 1;6:1439-49. doi: 10.3762/bjnano.6.149. eCollection 2015.
4
A machine learning approach to identify clinical trials involving nanodrugs and nanodevices from ClinicalTrials.gov.
PLoS One. 2014 Oct 27;9(10):e110331. doi: 10.1371/journal.pone.0110331. eCollection 2014.

本文引用的文献

1
Using nanoinformatics methods for automatically identifying relevant nanotoxicology entities from the literature.
Biomed Res Int. 2013;2013:410294. doi: 10.1155/2013/410294. Epub 2012 Dec 27.
2
International efforts in nanoinformatics research applied to nanomedicine.
Methods Inf Med. 2011;50(1):84-95. doi: 10.3414/ME10-02-0012. Epub 2010 Nov 18.
3
Recent progress in automatically extracting information from the pharmacogenomic literature.
Pharmacogenomics. 2010 Oct;11(10):1467-89. doi: 10.2217/pgs.10.136.
4
Natural Language Processing methods and systems for biomedical ontology learning.
J Biomed Inform. 2011 Feb;44(1):163-79. doi: 10.1016/j.jbi.2010.07.006. Epub 2010 Jul 18.
5
NanoParticle Ontology for cancer nanotechnology research.
J Biomed Inform. 2011 Feb;44(1):59-74. doi: 10.1016/j.jbi.2010.03.001. Epub 2010 Mar 6.
7
Patenting of nanopharmaceuticals in drug delivery: no small issue.
Recent Pat Drug Deliv Formul. 2007;1(2):131-42. doi: 10.2174/187221107780831941.
8
Nanotechnology: the coming revolution and its implications for consumers, clinicians, and informatics.
Nurs Outlook. 2008 Sep-Oct;56(5):268-74. doi: 10.1016/j.outlook.2008.06.004.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验