Suppr超能文献

自然语言处理方法和系统在生物医学本体学习中的应用。

Natural Language Processing methods and systems for biomedical ontology learning.

机构信息

Department of Biomedical Informatics, University of Pittsburgh School of Medicine, PA 15232, USA.

出版信息

J Biomed Inform. 2011 Feb;44(1):163-79. doi: 10.1016/j.jbi.2010.07.006. Epub 2010 Jul 18.

Abstract

While the biomedical informatics community widely acknowledges the utility of domain ontologies, there remain many barriers to their effective use. One important requirement of domain ontologies is that they must achieve a high degree of coverage of the domain concepts and concept relationships. However, the development of these ontologies is typically a manual, time-consuming, and often error-prone process. Limited resources result in missing concepts and relationships as well as difficulty in updating the ontology as knowledge changes. Methodologies developed in the fields of Natural Language Processing, information extraction, information retrieval and machine learning provide techniques for automating the enrichment of an ontology from free-text documents. In this article, we review existing methodologies and developed systems, and discuss how existing methods can benefit the development of biomedical ontologies.

摘要

虽然生物医学信息学领域广泛承认领域本体的实用性,但在有效使用它们方面仍然存在许多障碍。领域本体的一个重要要求是,它们必须实现对领域概念和概念关系的高度覆盖。然而,这些本体的开发通常是一个手动的、耗时的且经常容易出错的过程。有限的资源导致缺少概念和关系,并且难以随着知识的变化更新本体。自然语言处理、信息提取、信息检索和机器学习等领域中开发的方法提供了从自由文本文档自动丰富本体的技术。在本文中,我们回顾了现有的方法和开发的系统,并讨论了现有方法如何有益于生物医学本体的开发。

相似文献

1
Natural Language Processing methods and systems for biomedical ontology learning.
J Biomed Inform. 2011 Feb;44(1):163-79. doi: 10.1016/j.jbi.2010.07.006. Epub 2010 Jul 18.
2
Text-mining approach to evaluate terms for ontology development.
J Biomed Inform. 2009 Oct;42(5):824-30. doi: 10.1016/j.jbi.2009.03.009. Epub 2009 Mar 24.
3
How to link ontologies and protein-protein interactions to literature: text-mining approaches and the BioCreative experience.
Database (Oxford). 2012 Mar 21;2012:bas017. doi: 10.1093/database/bas017. Print 2012.
4
A knowledge-driven approach to biomedical document conceptualization.
Artif Intell Med. 2010 Jun;49(2):67-78. doi: 10.1016/j.artmed.2010.02.005. Epub 2010 Apr 3.
5
Semantic biomedical resource discovery: a Natural Language Processing framework.
BMC Med Inform Decis Mak. 2015 Sep 30;15:77. doi: 10.1186/s12911-015-0200-4.
7
Concept annotation in the CRAFT corpus.
BMC Bioinformatics. 2012 Jul 9;13:161. doi: 10.1186/1471-2105-13-161.
8
Automated ontology generation framework powered by linked biomedical ontologies for disease-drug domain.
Comput Methods Programs Biomed. 2018 Oct;165:117-128. doi: 10.1016/j.cmpb.2018.08.010. Epub 2018 Aug 16.
9
BO-LSTM: classifying relations via long short-term memory networks along biomedical ontologies.
BMC Bioinformatics. 2019 Jan 7;20(1):10. doi: 10.1186/s12859-018-2584-5.

引用本文的文献

1
A guide to developing harmonized research workflows in a team science context.
Exp Neurol. 2025 Jun 5;392:115333. doi: 10.1016/j.expneurol.2025.115333.
2
Incorporation of "Artificial Intelligence" for Objective Pain Assessment: A Comprehensive Review.
Pain Ther. 2024 Jun;13(3):293-317. doi: 10.1007/s40122-024-00584-8. Epub 2024 Mar 2.
4
Artificial Intelligence for Automatic Pain Assessment: Research Methods and Perspectives.
Pain Res Manag. 2023 Jun 28;2023:6018736. doi: 10.1155/2023/6018736. eCollection 2023.
8
Pain-Linguistics and Natural Language Processing.
Mayo Clin Proc Innov Qual Outcomes. 2020 Apr 25;4(3):346-347. doi: 10.1016/j.mayocpiqo.2020.01.005. eCollection 2020 Jun.
9
Evolving Role and Future Directions of Natural Language Processing in Gastroenterology.
Dig Dis Sci. 2021 Jan;66(1):29-40. doi: 10.1007/s10620-020-06156-y. Epub 2020 Feb 27.

本文引用的文献

1
Effectiveness of lexico-syntactic pattern matching for ontology enrichment with clinical documents.
Methods Inf Med. 2011;50(5):397-407. doi: 10.3414/ME10-01-0020. Epub 2010 Nov 8.
2
A methodology to enhance spatial understanding of disease outbreak events reported in news articles.
Int J Med Inform. 2010 Apr;79(4):284-96. doi: 10.1016/j.ijmedinf.2010.01.014. Epub 2010 Feb 13.
3
BioPortal: ontologies and integrated data resources at the click of a mouse.
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W170-3. doi: 10.1093/nar/gkp440. Epub 2009 May 29.
4
5
ChEBI: a database and ontology for chemical entities of biological interest.
Nucleic Acids Res. 2008 Jan;36(Database issue):D344-50. doi: 10.1093/nar/gkm791. Epub 2007 Oct 11.
6
Conceptual knowledge acquisition in biomedicine: A methodological review.
J Biomed Inform. 2007 Oct;40(5):582-602. doi: 10.1016/j.jbi.2007.03.005. Epub 2007 Mar 27.
7
Bio-ontologies: current trends and future directions.
Brief Bioinform. 2006 Sep;7(3):256-74. doi: 10.1093/bib/bbl027. Epub 2006 Aug 9.
8
Bio-Ontology and text: bridging the modeling gap.
Bioinformatics. 2006 Oct 1;22(19):2421-9. doi: 10.1093/bioinformatics/btl405. Epub 2006 Jul 26.
9
Automatic lexeme acquisition for a multilingual medical subword thesaurus.
Int J Med Inform. 2007 Feb-Mar;76(2-3):184-9. doi: 10.1016/j.ijmedinf.2006.05.032. Epub 2006 Jul 12.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验