Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA.
Int J Mol Sci. 2022 Apr 11;23(8):4229. doi: 10.3390/ijms23084229.
Aminoacyl-tRNA synthetase (aaRS)/tRNA cognate pairs translate the genetic code by synthesizing specific aminoacyl-tRNAs that are assembled on messenger RNA by the ribosome. Deconstruction of the two distinct aaRS superfamilies (Classes) has provided conceptual and experimental models for their early evolution. Urzymes, containing ~120-130 amino acids excerpted from regions where genetic coding sequence complementarities have been identified, are key experimental models motivated by the proposal of a single bidirectional ancestral gene. Previous reports that Class I and Class II urzymes accelerate both amino acid activation and tRNA aminoacylation have not been extended to other synthetases. We describe a third urzyme (LeuAC) prepared from the Class IA leucyl-tRNA synthetase. We adduce multiple lines of evidence for the authenticity of its catalysis of both canonical reactions, amino acid activation and tRNA aminoacylation. Mutation of the three active-site lysine residues to alanine causes significant, but modest reduction in both amino acid activation and aminoacylation. LeuAC also catalyzes production of ADP, a non-canonical enzymatic function that has been overlooked since it first was described for several full-length aaRS in the 1970s. Structural data suggest that the LeuAC active site accommodates two ATP conformations that are prominent in water but rarely seen bound to proteins, accounting for successive, in situ phosphorylation of the bound leucyl-5'AMP phosphate, accounting for ADP production. This unusual ATP consumption regenerates the transition state for amino acid activation and suggests, in turn, that in the absence of the editing and anticodon-binding domains, LeuAC releases leu-5'AMP unusually slowly, relative to the two phosphorylation reactions.
氨酰-tRNA 合成酶(aaRS)/tRNA 对通过合成特定的氨酰-tRNA 来翻译遗传密码,这些氨酰-tRNA 由核糖体在信使 RNA 上组装。对两个截然不同的 aaRS 超家族(Class)的解构为它们的早期进化提供了概念和实验模型。Urzymes 是从已经确定遗传编码序列互补性的区域中提取的约 120-130 个氨基酸的片段,是由单个双向祖先基因的提议所激发的关键实验模型。先前的报道表明,Class I 和 Class II urzymes 既可以加速氨基酸的激活,也可以加速 tRNA 的氨酰化,但这一结论尚未扩展到其他合成酶。我们描述了来自 Class IA 亮氨酰-tRNA 合成酶的第三种 urzyme(LeuAC)。我们提出了多条证据来证明其催化两个典型反应,即氨基酸激活和 tRNA 氨酰化的真实性。将三个活性位点赖氨酸残基突变为丙氨酸会导致氨基酸激活和氨酰化的显著但适度降低。LeuAC 还催化 ADP 的产生,这是一种非典型的酶促功能,自 20 世纪 70 年代首次描述几种全长 aaRS 以来,它一直被忽视。结构数据表明,LeuAC 的活性位点容纳了两种在水中很常见但很少在蛋白质中结合的 ATP 构象,这解释了结合的亮氨酰-5'AMP 磷酸酯的连续原位磷酸化,解释了 ADP 的产生。这种不寻常的 ATP 消耗再生了氨基酸激活的过渡态,并暗示在没有编辑和反密码子结合结构域的情况下,LeuAC 相对于两个磷酸化反应,异常缓慢地释放亮氨酰-5'AMP。