Suppr超能文献

一种有效的蛋白质结构相关性疏水性特征化方法。

Efficient method to characterize the context-dependent hydrophobicity of proteins.

机构信息

Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States.

出版信息

J Phys Chem B. 2014 Feb 13;118(6):1564-73. doi: 10.1021/jp4081977. Epub 2014 Jan 29.

Abstract

Characterizing the hydrophobicity of a protein surface is relevant to understanding and quantifying its interactions with ligands, other proteins, and extended interfaces. However, the hydrophobicity of a complex, heterogeneous protein surface depends not only on the chemistry of the underlying amino acids but also on the precise chemical pattern and topographical context presented by the surface. Characterization of such context-dependent hydrophobicity at nanoscale resolution is a nontrivial task. The free energy, μ(v)(ex), of forming a cavity near a surface has been shown to be a robust measure of context-dependent hydrophobicity, with more favorable μ(v)(ex) values suggesting hydrophobic regions. However, estimating μ(v)(ex) for cavities significantly larger than the size of a methane molecule in a spatially resolved manner near proteins is a computationally daunting task. Here, we present a new method for estimating μ(v)(ex) that is 2 orders of magnitude more efficient than conventional techniques. Our method envisions cavity creation as the emptying of a volume of interest, v, by applying an external potential that is proportional to the number of water molecules, N(v), in v. We show that the "force" to be integrated to obtain μ(v)(ex) is simply the average of N(v) in the presence of the potential, and can be sampled accurately using short simulations (50-100 ps), making our method very efficient. By leveraging the efficiency of the method to calculate μ(v)(ex) at various locations in the hydration shell of the protein, hydrophobin II, we are able to construct a hydrophobicity map of the protein that accounts for topographical and chemical context. Interestingly, we find that the map is also dependent on the shape and size of v, suggesting an "observer context" in mapping the hydrophobicity of protein surfaces.

摘要

描述蛋白质表面的疏水性对于理解和量化其与配体、其他蛋白质和扩展界面的相互作用至关重要。然而,复杂、不均匀的蛋白质表面的疏水性不仅取决于底层氨基酸的化学性质,还取决于表面呈现的精确化学模式和地形背景。纳米级分辨率下这种依赖于上下文的疏水性的特征描述是一项艰巨的任务。已经证明,在表面附近形成空腔的自由能μ(v)(ex)是衡量上下文相关疏水性的一个稳健指标,具有更有利的μ(v)(ex)值表明存在疏水区。然而,以空间分辨方式在蛋白质附近估算比甲烷分子尺寸大得多的空腔的μ(v)(ex)值是一项计算上艰巨的任务。在这里,我们提出了一种新的方法来估算μ(v)(ex),其效率比传统技术高 2 个数量级。我们的方法将空腔的创建设想为空腔的排空,即通过施加与腔体内水分子数量 N(v)成正比的外部势能。我们表明,要集成以获得μ(v)(ex)的“力”只是存在势时 N(v)的平均值,可以通过短时间模拟(50-100 ps)准确地采样,使得我们的方法非常高效。通过利用该方法的效率在蛋白质水合壳的各个位置计算μ(v)(ex),我们能够构建蛋白质的疏水性图,该图考虑了地形和化学上下文。有趣的是,我们发现该图还取决于 v 的形状和大小,这表明在映射蛋白质表面疏水性时存在“观察者上下文”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验