Suppr超能文献

单碱基分辨率下RNA测序数据的差异表达分析。

Differential expression analysis of RNA-seq data at single-base resolution.

作者信息

Frazee Alyssa C, Sabunciyan Sarven, Hansen Kasper D, Irizarry Rafael A, Leek Jeffrey T

机构信息

Department of Biostatistics, The Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA.

Department of Pediatrics, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA.

出版信息

Biostatistics. 2014 Jul;15(3):413-26. doi: 10.1093/biostatistics/kxt053. Epub 2014 Jan 6.

Abstract

RNA-sequencing (RNA-seq) is a flexible technology for measuring genome-wide expression that is rapidly replacing microarrays as costs become comparable. Current differential expression analysis methods for RNA-seq data fall into two broad classes: (1) methods that quantify expression within the boundaries of genes previously published in databases and (2) methods that attempt to reconstruct full length RNA transcripts. The first class cannot discover differential expression outside of previously known genes. While the second approach does possess discovery capabilities, statistical analysis of differential expression is complicated by the ambiguity and variability incurred while assembling transcripts and estimating their abundances. Here, we propose a novel method that first identifies differentially expressed regions (DERs) of interest by assessing differential expression at each base of the genome. The method then segments the genome into regions comprised of bases showing similar differential expression signal, and then assigns a measure of statistical significance to each region. Optionally, DERs can be annotated using a reference database of genomic features. We compare our approach with leading competitors from both current classes of differential expression methods and highlight the strengths and weaknesses of each. A software implementation of our method is available on github (https://github.com/alyssafrazee/derfinder).

摘要

RNA测序(RNA-seq)是一种用于测量全基因组表达的灵活技术,随着成本变得可比,它正在迅速取代微阵列。目前用于RNA-seq数据的差异表达分析方法大致可分为两类:(1)在数据库中先前公布的基因边界内量化表达的方法,以及(2)试图重建全长RNA转录本的方法。第一类方法无法发现先前已知基因之外的差异表达。虽然第二种方法确实具有发现能力,但在组装转录本并估计其丰度时产生的模糊性和变异性使差异表达的统计分析变得复杂。在这里,我们提出了一种新方法,该方法首先通过评估基因组每个碱基处的差异表达来识别感兴趣的差异表达区域(DER)。然后,该方法将基因组分割成由显示相似差异表达信号的碱基组成的区域,然后为每个区域赋予统计显著性度量。可选地,可以使用基因组特征参考数据库对DER进行注释。我们将我们的方法与当前两类差异表达方法中的领先竞争对手进行了比较,并突出了每种方法的优缺点。我们方法的软件实现可在github上获取(https://github.com/alyssafrazee/derfinder)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b311/4059460/b284366461f6/kxt05301.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验