State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China.
Institute for Water-Carbon Cycles and Carbon Neutrality, School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, 430072, China.
Nat Commun. 2023 Apr 15;14(1):2171. doi: 10.1038/s41467-023-37900-3.
Knowledge about global patterns of the decomposition kinetics of distinct soil organic matter (SOM) pools is crucial to robust estimates of land-atmosphere carbon fluxes under climate change. However, the current Earth system models often adopt globally-consistent reference SOM decomposition rates (k), ignoring effects from edaphic-climate heterogeneity. Here, we compile a comprehensive set of edaphic-climatic and SOM decomposition data from published incubation experiments and employ machine-learning techniques to develop models capable of predicting the expected sizes and k of multiple SOM pools (fast, slow, and passive). We show that soil texture dominates the turnover of the fast pools, whereas pH predominantly regulates passive SOM decomposition. This suggests that pH-sensitive bacterial decomposers might have larger effects on stable SOM decomposition than previously believed. Using these predictive models, we provide a 1-km resolution global-scale dataset of the sizes and k of these SOM pools, which may improve global biogeochemical model parameterization and predictions.
了解不同土壤有机物质(SOM)库分解动力学的全球模式对于稳健估计气候变化下的陆地-大气碳通量至关重要。然而,当前的地球系统模型通常采用全球一致的参考 SOM 分解速率(k),忽略了土壤-气候异质性的影响。在这里,我们从已发表的培养实验中编译了一套全面的土壤-气候和 SOM 分解数据,并运用机器学习技术开发了能够预测多个 SOM 库(快速、慢速和被动)的预期大小和 k 的模型。我们表明,土壤质地主导着快速库的周转,而 pH 值主要调节着被动 SOM 的分解。这表明对 pH 敏感的细菌分解者对稳定 SOM 分解的影响可能比以前认为的更大。使用这些预测模型,我们提供了一个具有 1 公里分辨率的全球尺度数据集,其中包含这些 SOM 库的大小和 k,这可能会改善全球生物地球化学模型的参数化和预测。