Suppr超能文献

多年冻土中的微生物群落和功能基因受纬度和土壤地球化学梯度的控制。

Permafrost microbial communities and functional genes are structured by latitudinal and soil geochemical gradients.

机构信息

Geology, Minerals, Energy, and Geophysics Science Center, United States Geological Survey, Menlo Park, CA, 94025, USA.

California State University Northridge, 18111 Nordhoff St., Northridge, CA, 91330, USA.

出版信息

ISME J. 2023 Aug;17(8):1224-1235. doi: 10.1038/s41396-023-01429-6. Epub 2023 May 22.

Abstract

Permafrost underlies approximately one quarter of Northern Hemisphere terrestrial surfaces and contains 25-50% of the global soil carbon (C) pool. Permafrost soils and the C stocks within are vulnerable to ongoing and future projected climate warming. The biogeography of microbial communities inhabiting permafrost has not been examined beyond a small number of sites focused on local-scale variation. Permafrost is different from other soils. Perennially frozen conditions in permafrost dictate that microbial communities do not turn over quickly, thus possibly providing strong linkages to past environments. Thus, the factors structuring the composition and function of microbial communities may differ from patterns observed in other terrestrial environments. Here, we analyzed 133 permafrost metagenomes from North America, Europe, and Asia. Permafrost biodiversity and taxonomic distribution varied in relation to pH, latitude and soil depth. The distribution of genes differed by latitude, soil depth, age, and pH. Genes that were the most highly variable across all sites were associated with energy metabolism and C-assimilation. Specifically, methanogenesis, fermentation, nitrate reduction, and replenishment of citric acid cycle intermediates. This suggests that adaptations to energy acquisition and substrate availability are among some of the strongest selective pressures shaping permafrost microbial communities. The spatial variation in metabolic potential has primed communities for specific biogeochemical processes as soils thaw due to climate change, which could cause regional- to global- scale variation in C and nitrogen processing and greenhouse gas emissions.

摘要

永久冻土覆盖了北半球约四分之一的陆地表面,其中包含了全球土壤碳(C)储量的 25-50%。永久冻土土壤及其内部的碳储量容易受到当前和未来预计的气候变暖的影响。目前,对永久冻土微生物群落的生物地理学研究还仅限于少数关注局部尺度变化的地点。与其他土壤不同,永久冻土的常年冻结条件决定了微生物群落不会迅速更替,因此可能与过去的环境有很强的联系。因此,构成微生物群落组成和功能的因素可能与其他陆地环境中观察到的模式不同。在这里,我们分析了来自北美、欧洲和亚洲的 133 个永久冻土宏基因组。永久冻土生物多样性和分类分布与 pH 值、纬度和土壤深度有关。基因的分布因纬度、土壤深度、年龄和 pH 值而异。在所有地点都变化最大的基因与能量代谢和 C 同化有关。具体来说,与甲烷生成、发酵、硝酸盐还原以及柠檬酸循环中间产物的补充有关。这表明,适应能量获取和基质可用性是塑造永久冻土微生物群落的一些最强的选择压力。由于气候变化导致土壤解冻,代谢潜力的空间变化使社区能够适应特定的生物地球化学过程,这可能导致碳和氮处理以及温室气体排放的区域到全球范围的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59fe/10356821/ac4aabb9c0e8/41396_2023_1429_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验