Department of Chemical Engineering, Boston, MA, USA.
Program in Bioengineering, College of Engineering, Northeastern University, Boston, MA, USA.
Int J Nanomedicine. 2014;9:257-63. doi: 10.2147/IJN.S54897. Epub 2013 Dec 28.
There has been a significant and growing concern over nosocomial medical device infections. Previous studies have demonstrated that embedding nanoparticles alone (specifically, zinc oxide [ZnO]) in conventional polymers (eg, polyvinyl chloride [PVC]) can decrease bacteria growth and may have the potential to prevent or disrupt bacterial processes that lead to infection. However, little to no studies have been conducted to determine mammalian cell functions on such a nanocomposite material. Clearly, for certain medical device applications, maintaining healthy mammalian cell functions while decreasing bacteria growth is imperative (yet uncommon). For this reason, in the presented study, ZnO nanoparticles of varying sizes (from 10 nm to >200 nm in diameter) and functionalization (including no functionalization to doping with aluminum oxide and functionalizing with a silane coupling agent KH550) were incorporated into PVC either with or without ultrasonication. Results of this study provided the first evidence of greater fibroblast density after 18 hours of culture on the smallest ZnO nanoparticle incorporated PVC samples with dispersion aided by ultrasonication. Specifically, the greatest amount of fibroblast proliferation was measured on ZnO nanoparticles functionalized with a silane coupling agent KH550; this sample exhibited the greatest dispersion of ZnO nanoparticles. Water droplet tests showed a general trend of decreased hydrophilicity when adding any of the ZnO nanoparticles to PVC, but an increase in hydrophilicity (albeit still below controls or pure PVC) when using ultrasonication to increase ZnO nanoparticle dispersion. Future studies will have to correlate this change in wettability to initial protein adsorption events that may explain fibroblast behavior. Mechanical tests also provided evidence of the ability to tailor mechanical properties of the ZnO/PVC nanocomposites through the use of the different ZnO nanoparticles. Coupled with previous antibacterial studies, the present study demonstrated that highly dispersed ZnO/PVC nanocomposite materials should be further studied for numerous medical device applications.
人们对医院医疗器械感染问题的关注度日益增加。先前的研究表明,将纳米颗粒(特别是氧化锌 [ZnO])嵌入到传统聚合物(如聚氯乙烯 [PVC])中可以减少细菌的生长,并且有可能阻止或破坏导致感染的细菌过程。然而,几乎没有研究来确定哺乳动物细胞在这种纳米复合材料上的功能。显然,对于某些医疗器械应用,在降低细菌生长的同时保持哺乳动物细胞的健康功能是至关重要的(但很少见)。出于这个原因,在本研究中,我们研究了不同尺寸(直径从 10nm 到> 200nm)和功能化(包括无功能化、氧化铝掺杂和硅烷偶联剂 KH550 功能化)的 ZnO 纳米颗粒被分别或共同掺入到 PVC 中,有些情况下还进行了超声处理。该研究结果首次提供了证据,表明在经过超声分散处理的最小 ZnO 纳米颗粒掺入的 PVC 样品上,培养 18 小时后成纤维细胞的密度更大。具体来说,在经硅烷偶联剂 KH550 功能化的 ZnO 纳米颗粒上测量到最大的成纤维细胞增殖;该样品表现出最大的 ZnO 纳米颗粒分散性。水滴测试表明,当向 PVC 添加任何 ZnO 纳米颗粒时,亲水性通常会降低,但当使用超声处理来增加 ZnO 纳米颗粒的分散度时,亲水性会增加(尽管仍低于对照或纯 PVC)。未来的研究必须将这种润湿性的变化与可能解释成纤维细胞行为的初始蛋白质吸附事件联系起来。机械测试也为通过使用不同的 ZnO 纳米颗粒来调整 ZnO/PVC 纳米复合材料的机械性能提供了证据。结合先前的抗菌研究,本研究表明,应进一步研究高度分散的 ZnO/PVC 纳米复合材料在众多医疗器械应用中的应用。