Computational Proteomics Unit and Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, CB2 1QR, Cambridge, UK and Université Grenoble-Alpes, CEA (iRSTV/BGE), INSERM (U1038), CNRS (FR3425), 38054 Grenoble, France.
Bioinformatics. 2014 May 1;30(9):1322-4. doi: 10.1093/bioinformatics/btu013. Epub 2014 Jan 11.
Experimental spatial proteomics, i.e. the high-throughput assignment of proteins to sub-cellular compartments based on quantitative proteomics data, promises to shed new light on many biological processes given adequate computational tools.
Here we present pRoloc, a complete infrastructure to support and guide the sound analysis of quantitative mass-spectrometry-based spatial proteomics data. It provides functionality for unsupervised and supervised machine learning for data exploration and protein classification and novelty detection to identify new putative sub-cellular clusters. The software builds upon existing infrastructure for data management and data processing.
实验空间蛋白质组学,即基于定量蛋白质组学数据将蛋白质高量分配到亚细胞区室,为许多生物过程提供了新的见解,这需要有足够的计算工具。
在这里,我们提出了 pRoloc,这是一个完整的基础设施,支持和指导基于定量质谱的空间蛋白质组学数据的合理分析。它提供了用于数据探索和蛋白质分类以及新颖性检测的无监督和监督机器学习功能,以识别新的潜在亚细胞群。该软件建立在现有的数据管理和数据处理基础设施之上。