Department of Biomedical Engineering, 100 Science Drive, Duke University, Durham, NC, 27708, USA.
Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
Sci Rep. 2018 Jul 24;8(1):11123. doi: 10.1038/s41598-018-29249-1.
A conventional photoacoustic microscopy (PAM) system typically has to make tradeoffs between its spatial resolution and penetration depth, by choosing a fixed configuration of optical excitation and acoustic detection. The single-scale imaging capability of PAM may limit its applications in biomedical studies. Here, we report a quad-mode photoacoustic microscopy (QM-PAM) system with four complementary spatial resolutions and maximum penetration depths. For this we first developed a ring-shaped focused ultrasound transducer that has two independent elements with respective central frequencies at 20 MHz and 40 MHz, providing complementary acoustically-determined spatial resolutions and penetration depths. To accommodate the dual-element ultrasound transducer, we implemented two optical excitation modes to provide tightly- and weakly-focused light illumination. The dual-element acoustic detection combined with the two optical focusing modes can thus provide four imaging scales in a single imaging device, with consistent contrast mechanisms and co-registered field of views. We have demonstrated the multiscale morphological, functional, and molecular imaging capability of QM-PAM in the mouse head, leg and ear in vivo. We expect the high scale flexibility of QM-PAM will enable broad applications in preclinical studies.
传统的光声显微镜(PAM)系统通常需要通过选择固定的光学激发和声学检测配置在其空间分辨率和穿透深度之间进行权衡。PAM 的单尺度成像能力可能限制了其在生物医学研究中的应用。在这里,我们报告了一种具有四种互补空间分辨率和最大穿透深度的四模式光声显微镜(QM-PAM)系统。为此,我们首先开发了一种环形聚焦超声换能器,该换能器具有两个独立的元件,其中心频率分别为 20MHz 和 40MHz,提供互补的声确定的空间分辨率和穿透深度。为了适应双元件超声换能器,我们实现了两种光学激发模式,以提供紧密聚焦和弱聚焦的光照明。因此,双元件声学检测与两种光学聚焦模式相结合,可以在单个成像设备中提供四种成像尺度,具有一致的对比机制和配准的视场。我们已经在小鼠头部、腿部和耳朵的体内证明了 QM-PAM 的多尺度形态、功能和分子成像能力。我们预计 QM-PAM 的高尺度灵活性将使其能够在临床前研究中得到广泛应用。