Suppr超能文献

基于支持向量机预测人类微小RNA与疾病的关联

Predicting human microRNA-disease associations based on support vector machine.

作者信息

Jiang Qinghua, Wang Guohua, Jin Shuilin, Li Yu, Wang Yadong

机构信息

Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.

出版信息

Int J Data Min Bioinform. 2013;8(3):282-93. doi: 10.1504/ijdmb.2013.056078.

Abstract

The identification of disease-related microRNAs is vital for understanding the pathogenesis of disease at the molecular level and may lead to the design of specific molecular tools for diagnosis, treatment and prevention. Experimental identification of disease-related microRNAs poses difficulties. Computational prediction of microRNA-disease associations is one of the complementary means. However, one major issue in microRNA studies is the lack of bioinformatics programs to accurately predict microRNA-disease associations. Herein, we present a machine-learning-based approach for distinguishing positive microRNA-disease associations from negative microRNA-disease associations. A set of features was extracted for each positive and negative microRNA-disease association, and a Support Vector Machine (SVM) classifier was trained, which achieved the area under the ROC curve of up to 0.8884 in 10-fold cross-validation procedure, indicating that the SVM-based approach described here can be used to predict potential microRNA-disease associations and formulate testable hypotheses to guide future biological experiments.

摘要

鉴定与疾病相关的微小RNA对于在分子水平上理解疾病发病机制至关重要,并且可能会促成用于诊断、治疗和预防的特定分子工具的设计。实验鉴定与疾病相关的微小RNA存在困难。微小RNA与疾病关联的计算预测是一种补充手段。然而,微小RNA研究中的一个主要问题是缺乏能够准确预测微小RNA与疾病关联的生物信息学程序。在此,我们提出一种基于机器学习的方法,用于区分微小RNA与疾病的正相关和负相关。为每个正、负微小RNA与疾病的关联提取了一组特征,并训练了支持向量机(SVM)分类器,在10折交叉验证过程中,该分类器的ROC曲线下面积高达0.8884,这表明本文所述的基于SVM的方法可用于预测潜在的微小RNA与疾病的关联,并形成可检验的假设以指导未来的生物学实验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验