Institut für Radiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany,
Eur Radiol. 2014 Apr;24(4):872-80. doi: 10.1007/s00330-013-3089-2. Epub 2014 Jan 15.
To develop a prototype algorithm for automatic spine segmentation in MDCT images and use it to automatically detect osteoporotic vertebral fractures.
Cross-sectional routine thoracic and abdominal MDCT images of 71 patients including 8 males and 9 females with 25 osteoporotic vertebral fractures and longitudinal MDCT images of 9 patients with 18 incidental fractures in the follow-up MDCT were retrospectively selected. The spine segmentation algorithm localised and identified the vertebrae T5-L5. Each vertebra was automatically segmented by using corresponding vertebra surface shape models that were adapted to the original images. Anterior, middle, and posterior height of each vertebra was automatically determined; the anterior-posterior ratio (APR) and middle-posterior ratio (MPR) were computed. As the gold standard, radiologists graded vertebral fractures from T5 to L5 according to the Genant classification in consensus.
Using ROC analysis to differentiate vertebrae without versus with prevalent fracture, AUC values of 0.84 and 0.83 were obtained for APR and MPR, respectively (p < 0.001). Longitudinal changes in APR and MPR were significantly different between vertebrae without versus with incidental fracture (ΔAPR: -8.5 % ± 8.6 % versus -1.6 % ± 4.2 %, p = 0.002; ΔMPR: -11.4 % ± 7.7 % versus -1.2 % ± 1.6 %, p < 0.001).
This prototype algorithm may support radiologists in reporting currently underdiagnosed osteoporotic vertebral fractures so that appropriate therapy can be initiated.
• This spine segmentation algorithm automatically localised, identified, and segmented the vertebrae in MDCT images. • Osteoporotic vertebral fractures could be automatically detected using this prototype algorithm. • The prototype algorithm helps radiologists to report underdiagnosed osteoporotic vertebral fractures.
开发一种用于 MDCT 图像中自动脊柱分割的原型算法,并使用该算法自动检测骨质疏松性椎体骨折。
回顾性选择 71 例患者的横断面常规胸部和腹部 MDCT 图像,包括 8 名男性和 9 名女性,共 25 例骨质疏松性椎体骨折和 9 例随访 MDCT 中的 18 例意外骨折的纵向 MDCT 图像。脊柱分割算法定位并识别 T5-L5 椎体。使用相应的椎体表面形状模型自动对每个椎体进行分割,该模型适用于原始图像。自动确定每个椎体的前、中和后高度;计算前后比(APR)和中后比(MPR)。以 Genant 分类为金标准,放射科医生对 T5 至 L5 的椎体骨折进行共识评估。
使用 ROC 分析区分无和有流行骨折的椎体,APR 和 MPR 的 AUC 值分别为 0.84 和 0.83(p<0.001)。无和有意外骨折的椎体的 APR 和 MPR 纵向变化差异有统计学意义(ΔAPR:-8.5%±8.6%对-1.6%±4.2%,p=0.002;ΔMPR:-11.4%±7.7%对-1.2%±1.6%,p<0.001)。
该原型算法可辅助放射科医生报告目前漏诊的骨质疏松性椎体骨折,从而启动适当的治疗。
• 该脊柱分割算法可自动定位、识别和分割 MDCT 图像中的椎体。• 该原型算法可自动检测骨质疏松性椎体骨折。• 该原型算法有助于放射科医生报告漏诊的骨质疏松性椎体骨折。