Suppr超能文献

从野生动物追踪数据中绘制时空重叠区域图。

Mapping areas of spatial-temporal overlap from wildlife tracking data.

机构信息

School of Geography and Geosciences, University of St Andrews, Irvine Building, North Street, St Andrews, Fife, KY16 9AL UK.

The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK USA.

出版信息

Mov Ecol. 2015 Nov 1;3:38. doi: 10.1186/s40462-015-0064-3. eCollection 2015.

Abstract

BACKGROUND

The study of inter-individual interactions (often termed spatial-temporal interactions, or dynamic interactions) from remote tracking data has focused primarily on identifying the presence of such interactions. New datasets and methods offer opportunity to answer more nuanced questions, such as where on the landscape interactions occur. In this paper, we provide a new approach for mapping areas of spatial-temporal overlap in wildlife from remote tracking data. The method, termed the joint potential path area (jPPA) builds from the time-geographic movement model, originally proposed for studying human movement patterns.

RESULTS

The jPPA approach can be used to delineate sub-areas of the home range where inter-individual interaction was possible. Maps of jPPA regions can be integrated with existing geographic data to explore landscape conditions and habitat associated with spatial temporal-interactions in wildlife. We apply the jPPA approach to simulated biased correlated random walks to demonstrate the method under known conditions. The jPPA method is then applied to three dyads, consisting of fine resolution (15 minute sampling interval) GPS tracking data of white-tailed deer (Odocoileus virginianus) collected in Oklahoma, USA. Our results demonstrate the ability of the jPPA to identify and map jPPA sub-areas of the home range. We show how jPPA maps can be used to identify habitat differences (using percent tree canopy cover as a habitat indicator) between areas of spatial-temporal overlap and the overall home range in each of the three deer dyads.

CONCLUSIONS

The value of the jPPA approach within current wildlife habitat analysis workflows is highlighted along with its simple and straightforward implementation and interpretation. Given the current emphasis on remote tracking in wildlife movement and habitat research, new approaches capable of leveraging both the spatial and temporal information content contained within these data are warranted. We make code (in the statistical software R) for implementing the jPPA approach openly available for other researchers.

摘要

背景

从远程追踪数据研究个体间的相互作用(通常称为时空相互作用或动态相互作用)主要集中在识别这种相互作用的存在。新的数据集和方法提供了回答更细致问题的机会,例如相互作用发生在景观的何处。在本文中,我们提供了一种从远程追踪数据中绘制野生动物时空重叠区域的新方法。该方法称为联合潜在路径区域(jPPA),源自最初用于研究人类运动模式的时间地理运动模型。

结果

jPPA 方法可用于划定个体间相互作用可能发生的家域子区域。jPPA 区域的地图可以与现有的地理数据集成,以探索与野生动物时空相互作用相关的景观条件和栖息地。我们应用 jPPA 方法对模拟的有偏相关随机游走进行演示,以在已知条件下展示该方法。然后,我们将 jPPA 方法应用于由美国俄克拉荷马州白尾鹿(Odocoileus virginianus)精细分辨率(15 分钟采样间隔)GPS 追踪数据组成的三个对偶数据。我们的结果证明了 jPPA 识别和绘制家域 jPPA 子区域的能力。我们展示了如何使用 jPPA 地图来识别时空重叠区域和每个鹿对偶数据的整体家域之间的栖息地差异(使用树冠百分比作为栖息地指标)。

结论

突出了 jPPA 方法在当前野生动物栖息地分析工作流程中的价值,以及其简单明了的实现和解释。鉴于当前对野生动物运动和栖息地研究中远程追踪的重视,需要新的方法来利用这些数据中包含的空间和时间信息内容。我们为实施 jPPA 方法的代码(在统计软件 R 中)提供了公开可用性,以供其他研究人员使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2c2/4628783/e7e4c6e5a6c0/40462_2015_64_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验