Suppr超能文献

使用半参数回归模型进行集成估计和变量选择。

Ensemble estimation and variable selection with semiparametric regression models.

作者信息

Shin Sunyoung, Liu Yufeng, Cole Stephen R, Fine Jason P

机构信息

Department of Mathematical Sciences, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, Texas 75080, U.S.A.

Department of Statistics and Operations Research, CB# 3260, University of North Carolina, Chapel Hill, North Carolina 27599, U.S.A.

出版信息

Biometrika. 2020 Jun;107(2):433-448. doi: 10.1093/biomet/asaa012. Epub 2020 Apr 15.

Abstract

We consider scenarios in which the likelihood function for a semiparametric regression model factors into separate components, with an efficient estimator of the regression parameter available for each component. An optimal weighted combination of the component estimators, named an ensemble estimator, may be employed as an overall estimate of the regression parameter, and may be fully efficient under uncorrelatedness conditions. This approach is useful when the full likelihood function may be difficult to maximize, but the components are easy to maximize. It covers settings where the nuisance parameter may be estimated at different rates in the component likelihoods. As a motivating example we consider proportional hazards regression with prospective doubly censored data, in which the likelihood factors into a current status data likelihood and a left-truncated right-censored data likelihood. Variable selection is important in such regression modelling, but the applicability of existing techniques is unclear in the ensemble approach. We propose ensemble variable selection using the least squares approximation technique on the unpenalized ensemble estimator, followed by ensemble re-estimation under the selected model. The resulting estimator has the oracle property such that the set of nonzero parameters is successfully recovered and the semiparametric efficiency bound is achieved for this parameter set. Simulations show that the proposed method performs well relative to alternative approaches. Analysis of an AIDS cohort study illustrates the practical utility of the method.

摘要

我们考虑这样的情形

半参数回归模型的似然函数分解为独立的部分,且每个部分都有回归参数的有效估计量。可以采用分量估计量的最优加权组合(称为总体估计量)作为回归参数的总体估计,并且在不相关条件下可能是完全有效的。当完整的似然函数可能难以最大化,但各部分容易最大化时,这种方法很有用。它涵盖了在分量似然中干扰参数可能以不同速率估计的情况。作为一个激励性的例子,我们考虑具有前瞻性双重删失数据的比例风险回归,其中似然函数分解为当前状态数据似然和左截断右删失数据似然。变量选择在这种回归建模中很重要,但现有技术在总体方法中的适用性尚不清楚。我们提出在无惩罚总体估计量上使用最小二乘近似技术进行总体变量选择,然后在所选模型下进行总体重新估计。得到的估计量具有神谕性质,即成功恢复了非零参数集,并为该参数集达到了半参数效率界。模拟表明,相对于其他方法,所提出的方法表现良好。对一项艾滋病队列研究的分析说明了该方法的实际效用。

相似文献

2
Collaborative double robust targeted maximum likelihood estimation.协作双稳健靶向最大似然估计
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
9
Partial likelihood estimation of isotonic proportional hazards models.等渗比例风险模型的偏似然估计
Biometrika. 2018 Mar 1;105(1):133-148. doi: 10.1093/biomet/asx064. Epub 2017 Dec 5.

本文引用的文献

4
On the robustness of the adaptive lasso to model misspecification.关于自适应套索对模型误设的稳健性。
Biometrika. 2012 Sep;99(3):717-731. doi: 10.1093/biomet/ass027. Epub 2012 Jul 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验