Suppr超能文献

Gα(q)蛋白调节线粒体动力学和生物能量学的一条新的非经典途径。

A new non-canonical pathway of Gα(q) protein regulating mitochondrial dynamics and bioenergetics.

作者信息

Benincá Cristiane, Planagumà Jesús, de Freitas Shuck Adriana, Acín-Perez Rebeca, Muñoz Juan Pablo, de Almeida Marina Mateus, Brown Joan H, Murphy Anne N, Zorzano Antonio, Enríquez Jose Antonio, Aragay Anna M

机构信息

Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain; Department of Cardiovascular Development and Repair, Spanish Cardiovascular Research Center (CNIC), Madrid 28029, Spain.

Department of Biomedicine, University of Bergen, 5009 Bergen, Norway.

出版信息

Cell Signal. 2014 May;26(5):1135-46. doi: 10.1016/j.cellsig.2014.01.009. Epub 2014 Jan 18.

Abstract

Contrary to previous assumptions, G proteins do not permanently reside on the plasma membrane, but are constantly monitoring the cytoplasmic surfaces of the plasma membrane and endomembranes. Here, we report that the Gαq and Gα11 proteins locate at the mitochondria and play a role in a complex signaling pathway that regulates mitochondrial dynamics. Our results provide evidence for the presence of the heteromeric G protein (Gαq/11βγ) at the outer mitochondrial membrane and for Gαq at the inner membrane. Both localizations are necessary to maintain the proper equilibrium between fusion and fission; which is achieved by altering the activity of mitofusin proteins, Drp1, OPA1 and the membrane potential at both the outer and inner mitochondrial membranes. As a result of the absence of Gαq/11, there is a decrease in mitochondrial fusion rates and a decrease in overall respiratory capacity, ATP production and OXPHOS-dependent growth. These findings demonstrate that the presence of Gαq proteins at the mitochondria serves as a physiological function: stabilizing elongated mitochondria and regulating energy production in Drp1 and Opa1 dependent mechanisms. This thereby links organelle dynamics and physiology.

摘要

与先前的假设相反,G蛋白并非永久驻留在质膜上,而是不断监测质膜和内膜的细胞质表面。在此,我们报告Gαq和Gα11蛋白定位于线粒体,并在调节线粒体动力学的复杂信号通路中发挥作用。我们的结果为在外线粒体膜存在异源三聚体G蛋白(Gαq/11βγ)以及在内膜存在Gαq提供了证据。这两种定位对于维持融合与裂变之间的适当平衡都是必要的;这是通过改变线粒体融合蛋白、动力蛋白1(Drp1)、视神经萎缩蛋白1(OPA1)的活性以及外膜和内膜的膜电位来实现的。由于缺乏Gαq/11,线粒体融合率降低,整体呼吸能力、ATP产生和氧化磷酸化依赖性生长均下降。这些发现表明,线粒体中Gαq蛋白的存在具有生理功能:在依赖Drp1和Opa1的机制中稳定伸长的线粒体并调节能量产生。由此将细胞器动力学与生理学联系起来。

相似文献

1
A new non-canonical pathway of Gα(q) protein regulating mitochondrial dynamics and bioenergetics.
Cell Signal. 2014 May;26(5):1135-46. doi: 10.1016/j.cellsig.2014.01.009. Epub 2014 Jan 18.
2
Protein kinase D activation induces mitochondrial fragmentation and dysfunction in cardiomyocytes.
J Physiol. 2018 Mar 1;596(5):827-855. doi: 10.1113/JP275418. Epub 2018 Jan 25.
3
Circadian Control of DRP1 Activity Regulates Mitochondrial Dynamics and Bioenergetics.
Cell Metab. 2018 Mar 6;27(3):657-666.e5. doi: 10.1016/j.cmet.2018.01.011. Epub 2018 Feb 22.
6
Mitochondrial morphology-emerging role in bioenergetics.
Free Radic Biol Med. 2012 Dec 15;53(12):2218-28. doi: 10.1016/j.freeradbiomed.2012.09.035. Epub 2012 Sep 29.
7
Loss of MIEF1/MiD51 confers susceptibility to BAX-mediated cell death and PINK1-PRKN-dependent mitophagy.
Autophagy. 2019 Dec;15(12):2107-2125. doi: 10.1080/15548627.2019.1596494. Epub 2019 Mar 28.
10
New insights into the function and regulation of mitochondrial fission.
Biochim Biophys Acta. 2013 May;1833(5):1256-68. doi: 10.1016/j.bbamcr.2013.02.002. Epub 2013 Feb 20.

引用本文的文献

2
SGLT2 inhibitor upregulates myocardial genes for oxidative phosphorylation and fatty acid metabolism in Gαq-mice.
J Mol Cell Cardiol Plus. 2025 Apr 9;12:100296. doi: 10.1016/j.jmccpl.2025.100296. eCollection 2025 Jun.
3
Mitochondrial phosphoproteomes are functionally specialized across tissues.
Life Sci Alliance. 2023 Nov 20;7(2). doi: 10.26508/lsa.202302147. Print 2024 Feb.
4
Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction.
Nat Metab. 2023 Apr;5(4):546-562. doi: 10.1038/s42255-023-00783-1. Epub 2023 Apr 26.
5
Gα modulates the energy metabolism of osteoclasts.
Front Cell Infect Microbiol. 2023 Jan 9;12:1016299. doi: 10.3389/fcimb.2022.1016299. eCollection 2022.
6
Gq Signaling in Autophagy Control: Between Chemical and Mechanical Cues.
Antioxidants (Basel). 2022 Aug 18;11(8):1599. doi: 10.3390/antiox11081599.
7
Oncogenic Gq/11 signaling acutely drives and chronically sustains metabolic reprogramming in uveal melanoma.
J Biol Chem. 2022 Jan;298(1):101495. doi: 10.1016/j.jbc.2021.101495. Epub 2021 Dec 14.
8
Gαq activation modulates autophagy by promoting mTORC1 signaling.
Nat Commun. 2021 Jul 27;12(1):4540. doi: 10.1038/s41467-021-24811-4.
9
Mitochondrial Dynamics: Fission and Fusion in Fate Determination of Mesenchymal Stem Cells.
Front Cell Dev Biol. 2020 Oct 15;8:580070. doi: 10.3389/fcell.2020.580070. eCollection 2020.

本文引用的文献

1
Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency.
Cell. 2013 Sep 26;155(1):160-71. doi: 10.1016/j.cell.2013.08.032. Epub 2013 Sep 19.
2
Keeping mitochondria in shape: a matter of life and death.
Eur J Clin Invest. 2013 Aug;43(8):886-93. doi: 10.1111/eci.12135.
3
Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload.
Cardiovasc Res. 2012 Jun 1;94(3):408-17. doi: 10.1093/cvr/cvs117. Epub 2012 Mar 8.
4
Mitochondrial CB₁ receptors regulate neuronal energy metabolism.
Nat Neurosci. 2012 Mar 4;15(4):558-64. doi: 10.1038/nn.3053.
5
Mitochondrial localization unveils a novel role for GRK2 in organelle biogenesis.
Cell Signal. 2012 Feb;24(2):468-475. doi: 10.1016/j.cellsig.2011.09.026. Epub 2011 Oct 1.
6
Non-canonical signaling and localizations of heterotrimeric G proteins.
Cell Signal. 2012 Jan;24(1):25-34. doi: 10.1016/j.cellsig.2011.08.014. Epub 2011 Sep 1.
7
p63RhoGEF couples Gα(q/11)-mediated signaling to Ca2+ sensitization of vascular smooth muscle contractility.
Circ Res. 2011 Oct 14;109(9):993-1002. doi: 10.1161/CIRCRESAHA.111.248898. Epub 2011 Sep 1.
8
Identification and characterization of a functional mitochondrial angiotensin system.
Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14849-54. doi: 10.1073/pnas.1101507108. Epub 2011 Aug 18.
9
Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure.
Circ Res. 2011 Apr 1;108(7):837-46. doi: 10.1161/CIRCRESAHA.110.232306. Epub 2011 Feb 10.
10
Molecular mechanisms and physiologic functions of mitochondrial dynamics.
J Biochem. 2011 Mar;149(3):241-51. doi: 10.1093/jb/mvr002. Epub 2011 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验