Benincá Cristiane, Planagumà Jesús, de Freitas Shuck Adriana, Acín-Perez Rebeca, Muñoz Juan Pablo, de Almeida Marina Mateus, Brown Joan H, Murphy Anne N, Zorzano Antonio, Enríquez Jose Antonio, Aragay Anna M
Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain; Department of Cardiovascular Development and Repair, Spanish Cardiovascular Research Center (CNIC), Madrid 28029, Spain.
Department of Biomedicine, University of Bergen, 5009 Bergen, Norway.
Cell Signal. 2014 May;26(5):1135-46. doi: 10.1016/j.cellsig.2014.01.009. Epub 2014 Jan 18.
Contrary to previous assumptions, G proteins do not permanently reside on the plasma membrane, but are constantly monitoring the cytoplasmic surfaces of the plasma membrane and endomembranes. Here, we report that the Gαq and Gα11 proteins locate at the mitochondria and play a role in a complex signaling pathway that regulates mitochondrial dynamics. Our results provide evidence for the presence of the heteromeric G protein (Gαq/11βγ) at the outer mitochondrial membrane and for Gαq at the inner membrane. Both localizations are necessary to maintain the proper equilibrium between fusion and fission; which is achieved by altering the activity of mitofusin proteins, Drp1, OPA1 and the membrane potential at both the outer and inner mitochondrial membranes. As a result of the absence of Gαq/11, there is a decrease in mitochondrial fusion rates and a decrease in overall respiratory capacity, ATP production and OXPHOS-dependent growth. These findings demonstrate that the presence of Gαq proteins at the mitochondria serves as a physiological function: stabilizing elongated mitochondria and regulating energy production in Drp1 and Opa1 dependent mechanisms. This thereby links organelle dynamics and physiology.
与先前的假设相反,G蛋白并非永久驻留在质膜上,而是不断监测质膜和内膜的细胞质表面。在此,我们报告Gαq和Gα11蛋白定位于线粒体,并在调节线粒体动力学的复杂信号通路中发挥作用。我们的结果为在外线粒体膜存在异源三聚体G蛋白(Gαq/11βγ)以及在内膜存在Gαq提供了证据。这两种定位对于维持融合与裂变之间的适当平衡都是必要的;这是通过改变线粒体融合蛋白、动力蛋白1(Drp1)、视神经萎缩蛋白1(OPA1)的活性以及外膜和内膜的膜电位来实现的。由于缺乏Gαq/11,线粒体融合率降低,整体呼吸能力、ATP产生和氧化磷酸化依赖性生长均下降。这些发现表明,线粒体中Gαq蛋白的存在具有生理功能:在依赖Drp1和Opa1的机制中稳定伸长的线粒体并调节能量产生。由此将细胞器动力学与生理学联系起来。