Suppr超能文献

通过遗传编码卤代烷烃非天然氨基酸实现临近蛋白交联。

Proximity-enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids.

机构信息

The Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037 (USA) http://wang.salk.edu/

出版信息

Angew Chem Int Ed Engl. 2014 Feb 17;53(8):2190-3. doi: 10.1002/anie.201308794. Epub 2014 Jan 21.

Abstract

The selective generation of covalent bonds between and within proteins would provide new avenues for studying protein function and engineering proteins with new properties. New covalent bonds were genetically introduced into proteins by enabling an unnatural amino acid (Uaa) to selectively react with a proximal natural residue. This proximity-enabled bioreactivity was expanded to a series of haloalkane Uaas. Orthogonal tRNA/synthetase pairs were evolved to incorporate these Uaas, which only form a covalent thioether bond with cysteine when positioned in close proximity. By using the Uaa and cysteine, spontaneous covalent bond formation was demonstrated between an affibody and its substrate Z protein, thereby leading to irreversible binding, and within the affibody to increase its thermostability. This strategy of proximity-enabled protein crosslinking (PEPC) may be generally expanded to target different natural amino acids, thus providing diversity and flexibility in covalent bond formation for protein research and protein engineering.

摘要

在蛋白质之间和内部选择性地生成共价键将为研究蛋白质功能和工程具有新特性的蛋白质提供新的途径。通过使非天然氨基酸 (Uaa) 选择性地与邻近的天然残基反应,在蛋白质中遗传引入新的共价键。这种邻近引发的生物反应性扩展到一系列卤代烷 Uaas。进化出正交的 tRNA/合成酶对来掺入这些 Uaas,当它们靠近时,这些 Uaas 仅与半胱氨酸形成共价硫醚键。通过使用 Uaa 和半胱氨酸,在亲和体与其底物 Z 蛋白之间证明了自发的共价键形成,从而导致不可逆结合,并在亲和体内部增加其热稳定性。这种邻近引发的蛋白质交联 (PEPC) 策略可以广泛扩展到针对不同的天然氨基酸,从而为蛋白质研究和蛋白质工程中的共价键形成提供多样性和灵活性。

相似文献

4
Genetically encoding new bioreactivity.基因编码新的生物活性。
N Biotechnol. 2017 Sep 25;38(Pt A):16-25. doi: 10.1016/j.nbt.2016.10.003. Epub 2016 Oct 6.

引用本文的文献

3
Genetic Code Expansion: Recent Developments and Emerging Applications.遗传密码扩展:最新进展与新兴应用
Chem Rev. 2025 Jan 22;125(2):523-598. doi: 10.1021/acs.chemrev.4c00216. Epub 2024 Dec 31.
5
Recent advances in the expanding genetic code.遗传密码的扩展研究进展。
Curr Opin Chem Biol. 2024 Dec;83:102537. doi: 10.1016/j.cbpa.2024.102537. Epub 2024 Oct 3.
6
Genetic Code Expansion Approaches to Decipher the Ubiquitin Code.遗传密码扩展方法解析泛素密码。
Chem Rev. 2024 Oct 23;124(20):11544-11584. doi: 10.1021/acs.chemrev.4c00375. Epub 2024 Sep 23.

本文引用的文献

4
Production of disulfide-bonded proteins in Escherichia coli.在大肠杆菌中生产二硫键结合蛋白。
Protein Expr Purif. 2012 Mar;82(1):240-51. doi: 10.1016/j.pep.2011.10.009. Epub 2011 Nov 7.
7
Adding new chemistries to the genetic code.向遗传密码中添加新的化学物质。
Annu Rev Biochem. 2010;79:413-44. doi: 10.1146/annurev.biochem.052308.105824.
8
Expanding the genetic code for biological studies.扩展用于生物学研究的遗传密码。
Chem Biol. 2009 Mar 27;16(3):323-36. doi: 10.1016/j.chembiol.2009.03.001.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验