Suppr超能文献

MyD88 和 TRIF 非依赖性诱导 I 型干扰素导致莱姆病中幼稚 B 细胞的积累,但不导致淋巴结结构的丧失。

MyD88- and TRIF-independent induction of type I interferon drives naive B cell accumulation but not loss of lymph node architecture in Lyme disease.

机构信息

Center for Comparative Medicine, University of California, Davis, Davis, California, USA.

出版信息

Infect Immun. 2014 Apr;82(4):1548-58. doi: 10.1128/IAI.00969-13. Epub 2014 Jan 22.

Abstract

Rapidly after infection, live Borrelia burgdorferi, the causative agent of Lyme disease, is found within lymph nodes, causing rapid and strong tissue enlargement, a loss of demarcation between B cell follicles and T cell zones, and an unusually large accumulation of B cells. We sought to explore the mechanisms underlying these changes, as lymph tissue disruption could be detrimental for the development of robust Borrelia-specific immunity. A time course study demonstrated that the loss of the normal lymph node structure was a distinct process that preceded the strong increases in B cells at the site. The selective increases in B cell frequencies were due not to proliferation but rather to cytokine-mediated repositioning of B cells to the lymph nodes, as shown with various gene-targeted and bone marrow irradiation chimeras. These studies demonstrated that B. burgdorferi infection induced type I interferon receptor (IFNR) signaling in lymph nodes in a MyD88- and TRIF-independent manner and that type I IFNR indirect signaling was required for the excessive increases of naive B cells at those sites. It did not, however, drive the observed histopathological changes, which occurred independently also from major shifts in the lymphocyte-homing chemokines, CXCL12, CXCL13, and CCL19/21, as shown by quantitative reverse transcription-PCR (qRT-PCR), flow cytometry, and transwell migration experiments. Thus, B. burgdorferi infection drives the production of type I IFN in lymph nodes and in so doing strongly alters the cellular composition of the lymph nodes, with potential detrimental effects for the development of robust Borrelia-specific immunity.

摘要

在感染后迅速,莱姆病的病原体活伯氏疏螺旋体被发现存在于淋巴结中,导致快速且强烈的组织肿大,B 细胞滤泡和 T 细胞区之间的分界丧失,以及异常大量的 B 细胞积累。我们试图探索这些变化的机制,因为淋巴组织的破坏可能对产生强大的伯氏疏螺旋体特异性免疫有害。一项时间进程研究表明,正常淋巴结结构的丧失是一个明显的过程,先于该部位 B 细胞的强烈增加。B 细胞频率的选择性增加不是由于增殖,而是由于细胞因子介导的 B 细胞向淋巴结的重新定位,这在各种基因靶向和骨髓照射嵌合体中得到了证明。这些研究表明,伯氏疏螺旋体感染以 MyD88 和 TRIF 非依赖性的方式在淋巴结中诱导 I 型干扰素受体(IFNR)信号,并且 I 型 IFNR 间接信号对于这些部位幼稚 B 细胞的过度增加是必需的。然而,它并没有驱动观察到的组织病理学变化,这些变化也独立于淋巴细胞归巢趋化因子 CXCL12、CXCL13 和 CCL19/21 的主要变化发生,如定量逆转录-PCR(qRT-PCR)、流式细胞术和 Transwell 迁移实验所示。因此,伯氏疏螺旋体感染驱动淋巴结中 I 型 IFN 的产生,从而强烈改变淋巴结的细胞组成,对产生强大的伯氏疏螺旋体特异性免疫可能产生潜在的不利影响。

相似文献

2
Lymphoadenopathy during lyme borreliosis is caused by spirochete migration-induced specific B cell activation.
PLoS Pathog. 2011 May;7(5):e1002066. doi: 10.1371/journal.ppat.1002066. Epub 2011 May 26.
3
Delays and diversions mark the development of B cell responses to Borrelia burgdorferi infection.
J Immunol. 2012 Jun 1;188(11):5612-22. doi: 10.4049/jimmunol.1103735. Epub 2012 Apr 30.
4
TRIF mediates Toll-like receptor 2-dependent inflammatory responses to Borrelia burgdorferi.
Infect Immun. 2013 Feb;81(2):402-10. doi: 10.1128/IAI.00890-12. Epub 2012 Nov 19.
6
A critical role for type I IFN in arthritis development following Borrelia burgdorferi infection of mice.
J Immunol. 2008 Dec 15;181(12):8492-503. doi: 10.4049/jimmunol.181.12.8492.
9

引用本文的文献

2
Antibody-mediated immunological memory correlates with long-term Lyme veterinary vaccine protection in mice.
Vaccine. 2024 Oct 24;42(24):126084. doi: 10.1016/j.vaccine.2024.06.051. Epub 2024 Jun 26.
4
Antigen-Specific CD4 T Cell and B Cell Responses to Borrelia burgdorferi.
J Immunol. 2023 Sep 15;211(6):994-1005. doi: 10.4049/jimmunol.2200890.
5
Comparative transcriptome analysis of and C3H mice infected with the Lyme disease pathogen.
Front Cell Infect Microbiol. 2023 Apr 11;13:1115350. doi: 10.3389/fcimb.2023.1115350. eCollection 2023.
6
Borrelia burgdorferi Engages Mammalian Type I IFN Responses via the cGAS-STING Pathway.
J Immunol. 2023 Jun 1;210(11):1761-1770. doi: 10.4049/jimmunol.2200354.
7
Immune evasion strategies of major tick-transmitted bacterial pathogens.
Trends Microbiol. 2023 Jan;31(1):62-75. doi: 10.1016/j.tim.2022.08.002. Epub 2022 Aug 31.
8
Recent Advances in the Immunologic Method Applied to Tick-Borne Diseases in Brazil.
Pathogens. 2022 Aug 2;11(8):870. doi: 10.3390/pathogens11080870.
9
CD4 T cell responses in persistent Borrelia burgdorferi infection.
Curr Opin Immunol. 2022 Aug;77:102187. doi: 10.1016/j.coi.2022.102187. Epub 2022 May 9.
10
The Brilliance of Mechanisms of Host Immune Evasion by Lyme Disease-Causing Spirochetes.
Pathogens. 2021 Mar 2;10(3):281. doi: 10.3390/pathogens10030281.

本文引用的文献

1
TRIF mediates Toll-like receptor 2-dependent inflammatory responses to Borrelia burgdorferi.
Infect Immun. 2013 Feb;81(2):402-10. doi: 10.1128/IAI.00890-12. Epub 2012 Nov 19.
2
Delays and diversions mark the development of B cell responses to Borrelia burgdorferi infection.
J Immunol. 2012 Jun 1;188(11):5612-22. doi: 10.4049/jimmunol.1103735. Epub 2012 Apr 30.
3
Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes.
Nat Rev Microbiol. 2012 Jan 9;10(2):87-99. doi: 10.1038/nrmicro2714.
4
Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs.
Annu Rev Immunol. 2012;30:69-94. doi: 10.1146/annurev-immunol-020711-075011. Epub 2011 Dec 5.
5
Type I interferon response to extracellular bacteria in the airway epithelium.
Trends Immunol. 2011 Dec;32(12):582-8. doi: 10.1016/j.it.2011.09.003. Epub 2011 Oct 11.
6
Lymphoadenopathy during lyme borreliosis is caused by spirochete migration-induced specific B cell activation.
PLoS Pathog. 2011 May;7(5):e1002066. doi: 10.1371/journal.ppat.1002066. Epub 2011 May 26.
9
Type I interferon: friend or foe?
J Exp Med. 2010 Sep 27;207(10):2053-63. doi: 10.1084/jem.20101664. Epub 2010 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验