Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX.
Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX.
J Immunol. 2023 Jun 1;210(11):1761-1770. doi: 10.4049/jimmunol.2200354.
Borrelia burgdorferi, the etiologic agent of Lyme disease, is a spirochete that modulates numerous host pathways to cause a chronic, multisystem inflammatory disease in humans. B. burgdorferi infection can lead to Lyme carditis, neurologic complications, and arthritis because of the ability of specific borrelial strains to disseminate, invade, and drive inflammation. B. burgdorferi elicits type I IFN (IFN-I) responses in mammalian cells and tissues that are associated with the development of severe arthritis or other Lyme-related complications. However, the innate immune sensors and signaling pathways controlling IFN-I induction remain unclear. In this study, we examined whether intracellular nucleic acid sensing is required for the induction of IFN-I to B. burgdorferi. Using fluorescence microscopy, we show that B. burgdorferi associates with mouse and human cells in culture, and we document that internalized spirochetes colocalize with the pattern recognition receptor cyclic GMP-AMP synthase (cGAS). Moreover, we report that IFN-I responses in mouse macrophages and murine embryonic fibroblasts are significantly attenuated in the absence of cGAS or its adaptor stimulator of IFN genes (STING), which function to sense and respond to intracellular DNA. Longitudinal in vivo tracking of bioluminescent B. burgdorferi revealed similar dissemination kinetics and borrelial load in C57BL/6J wild-type, cGAS-deficient, or STING-deficient mice. However, infection-associated tibiotarsal joint pathology and inflammation were modestly reduced in cGAS-deficient compared with wild-type mice. Collectively, these results indicate that the cGAS-STING pathway is a critical mediator of mammalian IFN-I signaling and innate immune responses to B. burgdorferi.
伯氏疏螺旋体(Borrelia burgdorferi)是莱姆病的病原体,是一种螺旋体,它调节许多宿主途径,导致人类慢性多系统炎症性疾病。由于特定的疏螺旋体菌株具有传播、侵袭和驱动炎症的能力,B. burgdorferi 感染可导致莱姆心炎、神经系统并发症和关节炎。B. burgdorferi 在哺乳动物细胞和组织中引发 I 型干扰素(IFN-I)反应,与严重关节炎或其他莱姆病相关并发症的发展有关。然而,控制 IFN-I 诱导的先天免疫传感器和信号通路仍不清楚。在这项研究中,我们研究了细胞内核酸感应是否是诱导 IFN-I 对 B. burgdorferi 的必要条件。使用荧光显微镜,我们显示 B. burgdorferi 在培养的小鼠和人类细胞中与细胞相关联,并且我们记录到内化的螺旋体与模式识别受体环鸟苷酸-AMP 合酶(cGAS)共定位。此外,我们报告说,在缺乏 cGAS 或其衔接子干扰素基因刺激物(STING)的情况下,小鼠巨噬细胞和鼠胚胎成纤维细胞中的 IFN-I 反应显着减弱,cGAS 和 STING 用于感应和响应细胞内 DNA。生物发光 B. burgdorferi 的体内纵向追踪显示,在 C57BL/6J 野生型、cGAS 缺陷型或 STING 缺陷型小鼠中,类似的传播动力学和伯氏疏螺旋体负荷。然而,与野生型小鼠相比,cGAS 缺陷型小鼠的感染相关的胫跗关节病理和炎症适度减少。总之,这些结果表明 cGAS-STING 途径是哺乳动物 IFN-I 信号和先天免疫对 B. burgdorferi 反应的关键介质。