Laboratory of Molecular Biomedicine, Institute of Bioscience, Serdang, Selangor, Malaysia.
Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Serdang, Selangor, Malaysia ; Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Saudi Arabia.
Int J Nanomedicine. 2014;9:351-62. doi: 10.2147/IJN.S53847. Epub 2014 Jan 7.
Iron oxide magnetic nanoparticles (MNPs) were synthesized by the coprecipitation of iron salts in sodium hydroxide followed by coating separately with chitosan (CS) and polyethylene glycol (PEG) to form CS-MNPs and PEG-MNPs nanoparticles, respectively. They were then loaded with kojic acid (KA), a pharmacologically bioactive natural compound, to form KA-CS-MNPs and KA-PEG-MNPs nanocomposites, respectively. The MNPs and their nanocomposites were characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, vibrating sample magnetometry, and scanning electron microscopy. The powder X-ray diffraction data suggest that all formulations consisted of highly crystalline, pure magnetite Fe3O4. The Fourier transform infrared spectroscopy and thermogravimetric analysis confirmed the presence of both polymers and KA in the nanocomposites. Magnetization curves showed that both nanocomposites (KA-CS-MNPs and KA-PEG-MNPs) were superparamagnetic with saturation magnetizations of 8.1 emu/g and 26.4 emu/g, respectively. The KA drug loading was estimated using ultraviolet-visible spectroscopy, which gave a loading of 12.2% and 8.3% for the KA-CS-MNPs and KA-PEG-MNPs nanocomposites, respectively. The release profile of the KA from the nanocomposites followed a pseudo second-order kinetic model. The agar diffusion test was performed to evaluate the antimicrobial activity for both KA-CS-MNPs and KA-PEG-MNPs nanocomposites against a number of microorganisms using two Gram-positive (methicillin-resistant Staphylococcus aureus and Bacillus subtilis) and one Gram-negative (Salmonella enterica) species, and showed some antibacterial activity, which could be enhanced in future studies by optimizing drug loading. This study provided evidence for the promise for the further investigation of the possible beneficial biological activities of KA and both KA-CS-MNPs and KA-PEG-MNPs nanocomposites in nanopharmaceutical applications.
氧化铁磁性纳米粒子(MNPs)是通过铁盐在氢氧化钠中的共沉淀合成的,然后分别用壳聚糖(CS)和聚乙二醇(PEG)进行涂层,分别形成 CS-MNPs 和 PEG-MNPs 纳米粒子。然后,它们分别负载曲酸(KA),一种具有药理生物活性的天然化合物,分别形成 KA-CS-MNPs 和 KA-PEG-MNPs 纳米复合材料。使用粉末 X 射线衍射、傅里叶变换红外光谱、热重分析、振动样品磁强计和扫描电子显微镜对 MNPs 和它们的纳米复合材料进行了表征。粉末 X 射线衍射数据表明,所有配方均由高度结晶、纯磁铁矿 Fe3O4 组成。傅里叶变换红外光谱和热重分析证实了纳米复合材料中两种聚合物和 KA 的存在。磁化曲线表明,两种纳米复合材料(KA-CS-MNPs 和 KA-PEG-MNPs)均为超顺磁性,饱和磁化强度分别为 8.1 emu/g 和 26.4 emu/g。使用紫外可见光谱法估算 KA 药物的负载量,KA-CS-MNPs 和 KA-PEG-MNPs 纳米复合材料的负载量分别为 12.2%和 8.3%。KA 从纳米复合材料中的释放曲线遵循伪二级动力学模型。琼脂扩散试验用于评估 KA-CS-MNPs 和 KA-PEG-MNPs 纳米复合材料对多种微生物的抗菌活性,使用两种革兰氏阳性(耐甲氧西林金黄色葡萄球菌和枯草芽孢杆菌)和一种革兰氏阴性(肠炎沙门氏菌),表现出一些抗菌活性,在未来的研究中,可以通过优化药物负载来增强这种活性。这项研究为进一步研究 KA 以及 KA-CS-MNPs 和 KA-PEG-MNPs 纳米复合材料在纳米药物应用中的潜在有益的生物学活性提供了证据。
Int J Nanomedicine. 2014-1-7
Mater Sci Eng C Mater Biol Appl. 2019-1-25
Molecules. 2021-11-17
Int J Nanomedicine. 2021
J Appl Toxicol. 2017-6-6
Biomacromolecules. 2017-2-13
Int J Nanomedicine. 2015-4-7
Expert Rev Clin Pharmacol. 2009-5
Int J Mol Sci. 2012-10-26
Int J Nanomedicine. 2012-11-12
Colloids Surf B Biointerfaces. 2010-7-14