Suppr超能文献

利用结构稀疏表示加速动态心脏磁共振成像。

Accelerating Dynamic Cardiac MR imaging using structured sparse representation.

机构信息

School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China.

School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China ; Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China ; Shenzhen Key Laboratory for MRI, Guangdong, Shenzhen 518055, China.

出版信息

Comput Math Methods Med. 2013;2013:160139. doi: 10.1155/2013/160139. Epub 2013 Dec 18.

Abstract

Compressed sensing (CS) has produced promising results on dynamic cardiac MR imaging by exploiting the sparsity in image series. In this paper, we propose a new method to improve the CS reconstruction for dynamic cardiac MRI based on the theory of structured sparse representation. The proposed method user the PCA subdictionaries for adaptive sparse representation and suppresses the sparse coding noise to obtain good reconstructions. An accelerated iterative shrinkage algorithm is used to solve the optimization problem and achieve a fast convergence rate. Experimental results demonstrate that the proposed method improves the reconstruction quality of dynamic cardiac cine MRI over the state-of-the-art CS method.

摘要

压缩感知(CS)通过利用图像序列的稀疏性,在动态心脏磁共振成像方面取得了有前景的结果。在本文中,我们提出了一种新的方法,基于结构稀疏表示理论,来提高基于 CS 的动态心脏 MRI 重建。该方法使用 PCA 子字典进行自适应稀疏表示,并抑制稀疏编码噪声,以获得良好的重建。采用加速迭代收缩算法来求解优化问题,实现快速收敛速度。实验结果表明,与最先进的 CS 方法相比,该方法提高了动态心脏电影 MRI 的重建质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa43/3878744/0789ed826973/CMMM2013-160139.001.jpg

相似文献

1
Accelerating Dynamic Cardiac MR imaging using structured sparse representation.
Comput Math Methods Med. 2013;2013:160139. doi: 10.1155/2013/160139. Epub 2013 Dec 18.
2
Exploiting the wavelet structure in compressed sensing MRI.
Magn Reson Imaging. 2014 Dec;32(10):1377-89. doi: 10.1016/j.mri.2014.07.016. Epub 2014 Aug 19.
4
Fast implementation for compressive recovery of highly accelerated cardiac cine MRI using the balanced sparse model.
Magn Reson Med. 2017 Apr;77(4):1505-1515. doi: 10.1002/mrm.26224. Epub 2016 Apr 5.
5
Adaptive fixed-point iterative shrinkage/thresholding algorithm for MR imaging reconstruction using compressed sensing.
Magn Reson Imaging. 2014 May;32(4):372-8. doi: 10.1016/j.mri.2013.12.009. Epub 2013 Dec 27.
6
k-t ISD: dynamic cardiac MR imaging using compressed sensing with iterative support detection.
Magn Reson Med. 2012 Jul;68(1):41-53. doi: 10.1002/mrm.23197. Epub 2011 Nov 23.
8
k-t Group sparse: a method for accelerating dynamic MRI.
Magn Reson Med. 2011 Oct;66(4):1163-76. doi: 10.1002/mrm.22883. Epub 2011 Mar 9.
9
Compressed sensing reconstruction of cardiac cine MRI using golden angle spiral trajectories.
J Magn Reson. 2015 Nov;260:10-9. doi: 10.1016/j.jmr.2015.09.003. Epub 2015 Sep 10.
10
Compressed sensing dynamic cardiac cine MRI using learned spatiotemporal dictionary.
IEEE Trans Biomed Eng. 2014 Apr;61(4):1109-20. doi: 10.1109/TBME.2013.2294939.

引用本文的文献

2
Parallel computing of patch-based nonlocal operator and its application in compressed sensing MRI.
Comput Math Methods Med. 2014;2014:257435. doi: 10.1155/2014/257435. Epub 2014 May 20.

本文引用的文献

1
Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator.
Med Image Anal. 2014 Aug;18(6):843-56. doi: 10.1016/j.media.2013.09.007. Epub 2013 Oct 16.
2
Adaptive dictionary learning in sparse gradient domain for image recovery.
IEEE Trans Image Process. 2013 Dec;22(12):4652-63. doi: 10.1109/TIP.2013.2277798. Epub 2013 Aug 15.
3
Highly undersampled magnetic resonance image reconstruction using two-level Bregman method with dictionary updating.
IEEE Trans Med Imaging. 2013 Jul;32(7):1290-301. doi: 10.1109/TMI.2013.2256464. Epub 2013 Apr 2.
4
Nonlocally centralized sparse representation for image restoration.
IEEE Trans Image Process. 2013 Apr;22(4):1620-30. doi: 10.1109/TIP.2012.2235847. Epub 2012 Dec 21.
5
Compressed sensing based real-time dynamic MRI reconstruction.
IEEE Trans Med Imaging. 2012 Dec;31(12):2253-66. doi: 10.1109/TMI.2012.2215921. Epub 2012 Aug 29.
6
Highly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE.
Magn Reson Med. 2013 Jul;70(1):64-74. doi: 10.1002/mrm.24440. Epub 2012 Aug 6.
7
Undersampled MRI reconstruction with patch-based directional wavelets.
Magn Reson Imaging. 2012 Sep;30(7):964-77. doi: 10.1016/j.mri.2012.02.019. Epub 2012 Apr 13.
8
Accelerated MR imaging using compressive sensing with no free parameters.
Magn Reson Med. 2012 Nov;68(5):1450-7. doi: 10.1002/mrm.24143. Epub 2012 Jan 20.
9
Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity.
IEEE Trans Image Process. 2012 May;21(5):2481-99. doi: 10.1109/TIP.2011.2176743. Epub 2011 Dec 14.
10
k-t ISD: dynamic cardiac MR imaging using compressed sensing with iterative support detection.
Magn Reson Med. 2012 Jul;68(1):41-53. doi: 10.1002/mrm.23197. Epub 2011 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验