Suppr超能文献

使用基于文献的推理自动生成病例定义。

Automating case definitions using literature-based reasoning.

机构信息

Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA) , Rockville, MD.

出版信息

Appl Clin Inform. 2013 Oct 30;4(4):515-27. doi: 10.4338/ACI-2013-04-RA-0028. eCollection 2013.

Abstract

BACKGROUND

Establishing a Case Definition (CDef) is a first step in many epidemiological, clinical, surveillance, and research activities. The application of CDefs still relies on manual steps and this is a major source of inefficiency in surveillance and research.

OBJECTIVE

Describe the need and propose an approach for automating the useful representation of CDefs for medical conditions.

METHODS

We translated the existing Brighton Collaboration CDef for anaphylaxis by mostly relying on the identification of synonyms for the criteria of the CDef using the NLM MetaMap tool. We also generated a CDef for the same condition using all the related PubMed abstracts, processing them with a text mining tool, and further treating the synonyms with the above strategy. The co-occurrence of the anaphylaxis and any other medical term within the same sentence of the abstracts supported the construction of a large semantic network. The 'islands' algorithm reduced the network and revealed its densest region including the nodes that were used to represent the key criteria of the CDef. We evaluated the ability of the "translated" and the "generated" CDef to classify a set of 6034 H1N1 reports for anaphylaxis using two similarity approaches and comparing them with our previous semi-automated classification approach.

RESULTS

Overall classification performance across approaches to producing CDefs was similar, with the generated CDef and vector space model with cosine similarity having the highest accuracy (0.825 ± 0.003) and the semi-automated approach and vector space model with cosine similarity having the highest recall (0.809 ± 0.042). Precision was low for all approaches.

CONCLUSION

The useful representation of CDefs is a complicated task but potentially offers substantial gains in efficiency to support safety and clinical surveillance.

摘要

背景

建立病例定义(CDef)是许多流行病学、临床、监测和研究活动的第一步。CDef 的应用仍然依赖于手动步骤,这是监测和研究效率低下的主要原因。

目的

描述自动化医疗条件下 CDef 有用表示的需求并提出一种方法。

方法

我们主要依靠 NLM MetaMap 工具识别 CDef 标准的同义词,来翻译现有的布莱顿合作组织过敏反应 CDef。我们还使用所有相关的 PubMed 摘要生成了相同条件的 CDef,并用文本挖掘工具对其进行处理,并使用上述策略处理同义词。摘要中过敏反应和任何其他医学术语在同一句子中的共现支持了构建大型语义网络。“岛屿”算法缩小了网络并揭示了其最密集的区域,包括用于表示 CDef 关键标准的节点。我们使用两种相似性方法评估“翻译”和“生成”CDef 对 6034 份 H1N1 过敏反应报告的分类能力,并将其与我们之前的半自动分类方法进行比较。

结果

生成 CDef 和余弦相似向量空间模型的整体分类性能相似,具有最高的准确性(0.825±0.003),半自动方法和余弦相似向量空间模型具有最高的召回率(0.809±0.042)。所有方法的精度都较低。

结论

CDef 的有用表示是一项复杂的任务,但有可能在支持安全性和临床监测方面带来实质性的效率提升。

相似文献

1
Automating case definitions using literature-based reasoning.使用基于文献的推理自动生成病例定义。
Appl Clin Inform. 2013 Oct 30;4(4):515-27. doi: 10.4338/ACI-2013-04-RA-0028. eCollection 2013.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验