Suppr超能文献

大脑中的生物运动编码:视觉驱动 EEG 功能网络分析。

Biological motion coding in the brain: analysis of visually driven EEG functional networks.

机构信息

Laboratorio de Investigación en Neurociencia, Departamento de Matemática y Ciencias,Universidad de San Andrés, Buenos Aires, Argentina ; CONICET, Buenos Aires, Argentina.

Laboratório de Neurobiologia II, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brasil ; Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem, Brasil.

出版信息

PLoS One. 2014 Jan 14;9(1):e84612. doi: 10.1371/journal.pone.0084612. eCollection 2014.

Abstract

Herein, we address the time evolution of brain functional networks computed from electroencephalographic activity driven by visual stimuli. We describe how these functional network signatures change in fast scale when confronted with point-light display stimuli depicting biological motion (BM) as opposed to scrambled motion (SM). Whereas global network measures (average path length, average clustering coefficient, and average betweenness) computed as a function of time did not discriminate between BM and SM, local node properties did. Comparing the network local measures of the BM condition with those of the SM condition, we found higher degree and betweenness values in the left frontal (F7) electrode, as well as a higher clustering coefficient in the right occipital (O2) electrode, for the SM condition. Conversely, for the BM condition, we found higher degree values in central parietal (Pz) electrode and a higher clustering coefficient in the left parietal (P3) electrode. These results are discussed in the context of the brain networks involved in encoding BM versus SM.

摘要

在此,我们研究了由视觉刺激驱动的脑电图活动计算出的脑功能网络的时间演化。我们描述了当面对描绘生物运动(BM)的点光显示刺激与混乱运动(SM)时,这些功能网络特征如何在快速尺度上发生变化。虽然作为时间函数计算的全局网络度量(平均路径长度、平均聚类系数和平均中间性)不能区分 BM 和 SM,但局部节点特性可以。将 BM 条件下的网络局部度量与 SM 条件下的网络局部度量进行比较,我们发现 SM 条件下左侧额叶(F7)电极的度数和中间性值较高,而右侧枕叶(O2)电极的聚类系数较高。相反,对于 BM 条件,我们发现中央顶叶(Pz)电极的度数较高,左侧顶叶(P3)电极的聚类系数较高。这些结果在涉及编码 BM 与 SM 的大脑网络的背景下进行了讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f26a/3891803/5229d2520570/pone.0084612.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验