Departamento de Matemática y Ciencias, Universidad de San Andrés, Buenos Aires, Argentina.
Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.
Sci Rep. 2018 Mar 16;8(1):4746. doi: 10.1038/s41598-018-23152-5.
The study of brain networks has developed extensively over the last couple of decades. By contrast, techniques for the statistical analysis of these networks are less developed. In this paper, we focus on the statistical comparison of brain networks in a nonparametric framework and discuss the associated detection and identification problems. We tested network differences between groups with an analysis of variance (ANOVA) test we developed specifically for networks. We also propose and analyse the behaviour of a new statistical procedure designed to identify different subnetworks. As an example, we show the application of this tool in resting-state fMRI data obtained from the Human Connectome Project. We identify, among other variables, that the amount of sleep the days before the scan is a relevant variable that must be controlled. Finally, we discuss the potential bias in neuroimaging findings that is generated by some behavioural and brain structure variables. Our method can also be applied to other kind of networks such as protein interaction networks, gene networks or social networks.
在过去的几十年里,脑网络的研究得到了广泛的发展。相比之下,这些网络的统计分析技术则不太发达。在本文中,我们专注于非参数框架下脑网络的统计比较,并讨论相关的检测和识别问题。我们使用专门为网络设计的方差分析 (ANOVA) 测试来测试组间的网络差异。我们还提出并分析了一种新的统计程序的行为,该程序旨在识别不同的子网。作为一个例子,我们展示了该工具在从人类连接组计划获得的静息态 fMRI 数据中的应用。我们确定了扫描前几天的睡眠时间等变量是必须控制的相关变量。最后,我们讨论了一些行为和大脑结构变量导致的神经影像学发现中的潜在偏差。我们的方法也可以应用于其他类型的网络,如蛋白质相互作用网络、基因网络或社交网络。
Sci Rep. 2018-3-16
Brain Connect. 2024-9
Neuroimage. 2017-9-12
Hum Brain Mapp. 2021-10-15
Psychiatry Clin Neurosci. 2025-4
Front Netw Physiol. 2024-1-16
Brief Bioinform. 2023-3-19
Nat Rev Neurosci. 2017-7
Proc Natl Acad Sci U S A. 2017-4-25
Nat Neurosci. 2017-2-23
Nat Neurosci. 2017-2-23
BMC Bioinformatics. 2017-2-14
Nat Commun. 2017-1-9
Nat Rev Neurosci. 2017-2