文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于方差分析的脑网络统计比较方法。

An ANOVA approach for statistical comparisons of brain networks.

机构信息

Departamento de Matemática y Ciencias, Universidad de San Andrés, Buenos Aires, Argentina.

Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.

出版信息

Sci Rep. 2018 Mar 16;8(1):4746. doi: 10.1038/s41598-018-23152-5.


DOI:10.1038/s41598-018-23152-5
PMID:29549369
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5856783/
Abstract

The study of brain networks has developed extensively over the last couple of decades. By contrast, techniques for the statistical analysis of these networks are less developed. In this paper, we focus on the statistical comparison of brain networks in a nonparametric framework and discuss the associated detection and identification problems. We tested network differences between groups with an analysis of variance (ANOVA) test we developed specifically for networks. We also propose and analyse the behaviour of a new statistical procedure designed to identify different subnetworks. As an example, we show the application of this tool in resting-state fMRI data obtained from the Human Connectome Project. We identify, among other variables, that the amount of sleep the days before the scan is a relevant variable that must be controlled. Finally, we discuss the potential bias in neuroimaging findings that is generated by some behavioural and brain structure variables. Our method can also be applied to other kind of networks such as protein interaction networks, gene networks or social networks.

摘要

在过去的几十年里,脑网络的研究得到了广泛的发展。相比之下,这些网络的统计分析技术则不太发达。在本文中,我们专注于非参数框架下脑网络的统计比较,并讨论相关的检测和识别问题。我们使用专门为网络设计的方差分析 (ANOVA) 测试来测试组间的网络差异。我们还提出并分析了一种新的统计程序的行为,该程序旨在识别不同的子网。作为一个例子,我们展示了该工具在从人类连接组计划获得的静息态 fMRI 数据中的应用。我们确定了扫描前几天的睡眠时间等变量是必须控制的相关变量。最后,我们讨论了一些行为和大脑结构变量导致的神经影像学发现中的潜在偏差。我们的方法也可以应用于其他类型的网络,如蛋白质相互作用网络、基因网络或社交网络。

相似文献

[1]
An ANOVA approach for statistical comparisons of brain networks.

Sci Rep. 2018-3-16

[2]
A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.

Med Image Anal. 2013-1-29

[3]
Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs.

Neuroimage. 2017-11-10

[4]
SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.

Neuroimage. 2016-7-1

[5]
The Interest and Usefulness of Resting State fMRI in Brain Connectivity Research.

Brain Connect. 2024-9

[6]
Strong-Weak Pruning for Brain Network Identification in Connectome-Wide Neuroimaging: Application to Amyotrophic Lateral Sclerosis Disease Stage Characterization.

Int J Neural Syst. 2019-2-14

[7]
Interpreting temporal fluctuations in resting-state functional connectivity MRI.

Neuroimage. 2017-9-12

[8]
Dyconnmap: Dynamic connectome mapping-A neuroimaging python module.

Hum Brain Mapp. 2021-10-15

[9]
A Novel Method for Extracting Hierarchical Functional Subnetworks Based on a Multisubject Spectral Clustering Approach.

Brain Connect. 2019-4-23

[10]
A connectionist approach to mapping the human connectome permits simulations of neural activity within an artificial brain.

Brain Connect. 2014-2

引用本文的文献

[1]
Assessing brain-muscle networks during motor imagery to detect covert command-following.

BMC Med. 2025-2-6

[2]
Two-year impact of COVID-19: Longitudinal MRI brain changes and neuropsychiatric trajectories.

Psychiatry Clin Neurosci. 2025-4

[3]
XAI-driven CatBoost multi-layer perceptron neural network for analyzing breast cancer.

Sci Rep. 2024-11-19

[4]
The time-evolving epileptic brain network: concepts, definitions, accomplishments, perspectives.

Front Netw Physiol. 2024-1-16

[5]
Deep versus Handcrafted Tensor Radiomics Features: Prediction of Survival in Head and Neck Cancer Using Machine Learning and Fusion Techniques.

Diagnostics (Basel). 2023-5-11

[6]
Prediction of Cognitive Decline in Parkinson's Disease Using Clinical and DAT SPECT Imaging Features, and Hybrid Machine Learning Systems.

Diagnostics (Basel). 2023-5-10

[7]
netANOVA: novel graph clustering technique with significance assessment via hierarchical ANOVA.

Brief Bioinform. 2023-3-19

[8]
Curve Fitting for Damage Evolution through Regression Analysis for the Kachanov-Rabotnov Model to the Norton-Bailey Creep Law of SS-316 Material.

Materials (Basel). 2021-9-23

[9]
Statistical and Machine Learning Link Selection Methods for Brain Functional Networks: Review and Comparison.

Brain Sci. 2021-5-31

[10]
Construct social-behavioral association network to study management impact on waterbirds community ecology using digital video recording cameras.

Ecol Evol. 2021-2-1

本文引用的文献

[1]
Towards affordable biomarkers of frontotemporal dementia: A classification study via network's information sharing.

Sci Rep. 2017-6-19

[2]
The sleep-deprived human brain.

Nat Rev Neurosci. 2017-7

[3]
Controversy in statistical analysis of functional magnetic resonance imaging data.

Proc Natl Acad Sci U S A. 2017-4-25

[4]
Best practices in data analysis and sharing in neuroimaging using MRI.

Nat Neurosci. 2017-2-23

[5]
Focus on human brain mapping.

Nat Neurosci. 2017-2-23

[6]
Sparse kernel canonical correlation analysis for discovery of nonlinear interactions in high-dimensional data.

BMC Bioinformatics. 2017-2-14

[7]
Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: Issues and recommendations.

Neuroimage. 2017-5-15

[8]
Formation of Long-Term Locomotor Memories Is Associated with Functional Connectivity Changes in the Cerebellar-Thalamic-Cortical Network.

J Neurosci. 2017-1-11

[9]
Quantification of network structural dissimilarities.

Nat Commun. 2017-1-9

[10]
Scanning the horizon: towards transparent and reproducible neuroimaging research.

Nat Rev Neurosci. 2017-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索