Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.
Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan.
PLoS One. 2014 Jan 15;9(1):e85182. doi: 10.1371/journal.pone.0085182. eCollection 2014.
Massive scleractinian corals of the genus Porites are important reef builders in the Indo-Pacific, and they are more resistant to thermal stress than other stony corals, such as the genus Acropora. Because coral health and survival largely depend on the interaction between a coral host and its symbionts, it is important to understand the molecular interactions of an entire "coral holobiont". We simultaneously sequenced transcriptomes of Porites australiensis and its symbionts using the Illumina Hiseq2000 platform. We obtained 14.3 Gbp of sequencing data and assembled it into 74,997 contigs (average: 1,263 bp, N50 size: 2,037 bp). We successfully distinguished contigs originating from the host (Porites) and the symbiont (Symbiodinium) by aligning nucleotide sequences with the decoded Acropora digitifera and Symbiodinium minutum genomes. In contrast to previous coral transcriptome studies, at least 35% of the sequences were found to have originated from the symbionts, indicating that it is possible to analyze both host and symbiont transcriptomes simultaneously. Conserved protein domain and KEGG analyses showed that the dataset contains broad gene repertoires of both Porites and Symbiodinium. Effective utilization of sequence reads revealed that the polymorphism rate in P. australiensis is 1.0% and identified the major symbiotic Symbiodinium as Type C15. Analyses of amino acid biosynthetic pathways suggested that this Porites holobiont is probably able to synthesize most of the common amino acids and that Symbiodinium is potentially able to provide essential amino acids to its host. We believe this to be the first molecular evidence of complementarity in amino acid metabolism between coral hosts and their symbionts. We successfully assembled genes originating from both the host coral and the symbiotic Symbiodinium to create a snapshot of the coral holobiont transcriptome. This dataset will facilitate a deeper understanding of molecular mechanisms of coral symbioses and stress responses.
多孔螅属的大型石珊瑚是印度-太平洋地区重要的造礁珊瑚,它们比其他石珊瑚(如鹿角珊瑚属)更能耐受热胁迫。由于珊瑚的健康和生存在很大程度上取决于珊瑚宿主与其共生体之间的相互作用,因此了解整个“珊瑚整体共生体”的分子相互作用非常重要。我们使用 Illumina Hiseq2000 平台同时对澳大利亚多孔螅及其共生体进行了转录组测序。我们获得了 143 亿 bp 的测序数据,并将其组装成 74997 个 contigs(平均长度:1263 bp,N50 大小:2037 bp)。我们通过将核苷酸序列与解码的鹿角珊瑚和共生体 Symbiodinium minutum 基因组进行比对,成功地区分了源自宿主(多孔螅)和共生体(共生藻)的 contigs。与以前的珊瑚转录组研究相比,至少有 35%的序列源自共生体,这表明可以同时分析宿主和共生体的转录组。保守蛋白结构域和 KEGG 分析表明,该数据集包含多孔螅和共生藻广泛的基因谱。有效利用序列读取揭示了澳大利亚多孔螅的多态性率为 1.0%,并确定了主要共生的 Symbiodinium 为 C15 型。氨基酸生物合成途径的分析表明,这种多孔螅整体共生体可能能够合成大多数常见的氨基酸,并且共生藻可能能够为其宿主提供必需的氨基酸。我们认为这是珊瑚宿主与其共生体之间在氨基酸代谢互补性方面的第一个分子证据。我们成功地组装了源自宿主珊瑚和共生的 Symbiodinium 的基因,为珊瑚整体共生体转录组创建了一个快照。该数据集将有助于更深入地了解珊瑚共生和应激反应的分子机制。