Suppr超能文献

通过通用元数据清单和数据发布实现更透明、可重复的组学研究。

Toward more transparent and reproducible omics studies through a common metadata checklist and data publications.

作者信息

Kolker Eugene, Özdemir Vural, Martens Lennart, Hancock William, Anderson Gordon, Anderson Nathaniel, Aynacioglu Sukru, Baranova Ancha, Campagna Shawn R, Chen Rui, Choiniere John, Dearth Stephen P, Feng Wu-Chun, Ferguson Lynnette, Fox Geoffrey, Frishman Dmitrij, Grossman Robert, Heath Allison, Higdon Roger, Hutz Mara H, Janko Imre, Jiang Lihua, Joshi Sanjay, Kel Alexander, Kemnitz Joseph W, Kohane Isaac S, Kolker Natali, Lancet Doron, Lee Elaine, Li Weizhong, Lisitsa Andrey, Llerena Adrian, Macnealy-Koch Courtney, Marshall Jean-Claude, Masuzzo Paola, May Amanda, Mias George, Monroe Matthew, Montague Elizabeth, Mooney Sean, Nesvizhskii Alexey, Noronha Santosh, Omenn Gilbert, Rajasimha Harsha, Ramamoorthy Preveen, Sheehan Jerry, Smarr Larry, Smith Charles V, Smith Todd, Snyder Michael, Rapole Srikanth, Srivastava Sanjeeva, Stanberry Larissa, Stewart Elizabeth, Toppo Stefano, Uetz Peter, Verheggen Kenneth, Voy Brynn H, Warnich Louise, Wilhelm Steven W, Yandl Gregory

机构信息

1 Bioinformatics and High-Throughput Analysis Laboratory, Seattle Children's Research Institute , Seattle, Washington.

出版信息

OMICS. 2014 Jan;18(1):10-4. doi: 10.1089/omi.2013.0149.

Abstract

Biological processes are fundamentally driven by complex interactions between biomolecules. Integrated high-throughput omics studies enable multifaceted views of cells, organisms, or their communities. With the advent of new post-genomics technologies, omics studies are becoming increasingly prevalent; yet the full impact of these studies can only be realized through data harmonization, sharing, meta-analysis, and integrated research. These essential steps require consistent generation, capture, and distribution of metadata. To ensure transparency, facilitate data harmonization, and maximize reproducibility and usability of life sciences studies, we propose a simple common omics metadata checklist. The proposed checklist is built on the rich ontologies and standards already in use by the life sciences community. The checklist will serve as a common denominator to guide experimental design, capture important parameters, and be used as a standard format for stand-alone data publications. The omics metadata checklist and data publications will create efficient linkages between omics data and knowledge-based life sciences innovation and, importantly, allow for appropriate attribution to data generators and infrastructure science builders in the post-genomics era. We ask that the life sciences community test the proposed omics metadata checklist and data publications and provide feedback for their use and improvement.

摘要

生物过程从根本上是由生物分子之间的复杂相互作用驱动的。综合高通量组学研究能够从多方面观察细胞、生物体或它们的群落。随着新的后基因组技术的出现,组学研究越来越普遍;然而,这些研究的全部影响只有通过数据协调、共享、荟萃分析和综合研究才能实现。这些关键步骤需要一致地生成、捕获和分发元数据。为确保透明度、促进数据协调以及最大限度地提高生命科学研究的可重复性和可用性,我们提出了一个简单通用的组学元数据清单。所提出的清单建立在生命科学领域已经使用的丰富本体和标准之上。该清单将作为一个共同标准,用于指导实验设计、捕获重要参数,并用作独立数据出版物的标准格式。组学元数据清单和数据出版物将在组学数据与基于知识的生命科学创新之间建立有效的联系,重要的是,在后基因组时代允许对数据生成者和基础设施科学建设者进行适当的归因。我们要求生命科学领域测试所提出的组学元数据清单和数据出版物,并为其使用和改进提供反馈。

相似文献

4

引用本文的文献

2
Ten simple rules for starting FAIR discussions in your community.开展 FAIR 讨论的十项简单规则:在你的社区中。
PLoS Comput Biol. 2023 Dec 14;19(12):e1011668. doi: 10.1371/journal.pcbi.1011668. eCollection 2023 Dec.
4
Data Integration Challenges for Machine Learning in Precision Medicine.精准医学中机器学习的数据整合挑战
Front Med (Lausanne). 2022 Jan 25;8:784455. doi: 10.3389/fmed.2021.784455. eCollection 2021.
5
Expanding and Remixing the Metadata Landscape.拓展与混编元数据领域。
Trends Cancer. 2021 Apr;7(4):276-278. doi: 10.1016/j.trecan.2020.10.011. Epub 2020 Nov 20.
6
Towards an understanding of the avian virome.探索禽类病毒组。
J Gen Virol. 2020 Aug;101(8):785-790. doi: 10.1099/jgv.0.001447. Epub 2020 Jun 9.
10
Dual Analysis of Virus-Host Interactions: The Case of 1 and the Cupped Oyster .病毒-宿主相互作用的双重分析:以1和杯形牡蛎为例
Evol Bioinform Online. 2019 Feb 22;15:1176934319831305. doi: 10.1177/1176934319831305. eCollection 2019.

本文引用的文献

5
A sea of standards for omics data: sink or swim?组学数据标准的海洋:沉或浮?
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):200-3. doi: 10.1136/amiajnl-2013-002066. Epub 2013 Sep 27.
7
The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013.PRIDE 数据库及相关工具:2013 年的现状。
Nucleic Acids Res. 2013 Jan;41(Database issue):D1063-9. doi: 10.1093/nar/gks1262. Epub 2012 Nov 29.
9
NCBI GEO: archive for functional genomics data sets--update.NCBI GEO:功能基因组学数据集存档 - 更新。
Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5. doi: 10.1093/nar/gks1193. Epub 2012 Nov 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验