Suppr超能文献

直接将石墨烯化学转化为硼、氮和碳原子层。

Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers.

机构信息

1] Department of Chemistry, Rice University, Houston, Texas 77005, USA [2].

1] Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA [2].

出版信息

Nat Commun. 2014;5:3193. doi: 10.1038/ncomms4193.

Abstract

Graphene and hexagonal boron nitride are typical conductor and insulator, respectively, while their hybrids hexagonal boron carbonitride are promising as a semiconductor. Here we demonstrate a direct chemical conversion reaction, which systematically converts the hexagonal carbon lattice of graphene to boron nitride, making it possible to produce uniform boron nitride and boron carbonitride structures without disrupting the structural integrity of the original graphene templates. We synthesize high-quality atomic layer films with boron-, nitrogen- and carbon-containing atomic layers with full range of compositions. Using this approach, the electrical resistance, carrier mobilities and bandgaps of these atomic layers can be tuned from conductor to semiconductor to insulator. Combining this technique with lithography, local conversion could be realized at the nanometre scale, enabling the fabrication of in-plane atomic layer structures consisting of graphene, boron nitride and boron carbonitride. This is a step towards scalable synthesis of atomically thin two-dimensional integrated circuits.

摘要

石墨烯和六方氮化硼分别是典型的导体和绝缘体,而它们的混合相六方硼碳氮化物则有望成为半导体。在这里,我们展示了一种直接的化学转化反应,它可以系统地将石墨烯的六方碳晶格转化为氮化硼,从而有可能在不破坏原始石墨烯模板结构完整性的情况下生成均匀的氮化硼和硼碳氮化物结构。我们用这种方法合成了高质量的原子层薄膜,其组成范围涵盖了含硼、氮和碳的原子层。通过这种方法,这些原子层的电阻、载流子迁移率和带隙可以从导体调节到半导体再到绝缘体。将这种技术与光刻技术相结合,可以在纳米尺度上实现局部转化,从而能够制造出由石墨烯、氮化硼和硼碳氮化物组成的平面原子层结构。这是朝着可扩展的原子薄二维集成电路合成迈出的一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验